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Abstract

The influence of rotatory inertial correction factor on the vibration of elastically supported non-
uniform Rayleigh beam under moving distributed masses and resting on variable bi-parametric
elastic foundation is investigated. The governing equation is a fourth order partial differential
equation with variable and singular co-efficients. In order to solve this equation, the method of
Galerkin is used to reduce the governing differential equation to a sequence of coupled second
order ordinary differential equation which is then simplified with modified asymptotic method
of Struble. The simplified equation is solved using the integral transformation technique. The
analysis of the closed form solution shows that resonance is attained earlier in moving mass
system than in the moving force system. The results in plotted graphs show that as the
rotatory inertia, foundation modulus and shear modulus increase, the deflection of the elastically
supported non-uniform Rayleigh beam decreases in each case. The transverse deflections of the
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elastically supported beam on variable bi parametric elastic foundation are higher under the
action of moving masses than those when only the force effects of the moving load are considered.
This implies that resonance is reached faster in moving mass problem than in moving force
problem.

Keywords: Bi-parametric foundation; shear deformation, resonance; critical speed; natural frequency;
modified frequency.

1 Introduction

In recent years, while heavy and high speed vehicles are increasing in number due to increase
in domestic and foreign trade, the development in design, and construction technology in civil
engineering enable the construction of more light and slender structures, which causes structures to
be more vulnerable to dynamic loads, especially moving loads. Large deflections and vibrations
of beam-like structures especially bridges induced by the heavy and high speed vehicles may
significantly increase the internal stresses and the safety and serviceability of the bridges.

Several authors [1-5] in engineering and applied mathematics have extensively studied the vibration
of beams. The study of vibration of beams and that due to applied forces (moving or static) have
not been neglected. The problem of moving load was first tackled for the case in which the beam
mass was considered small against the mass of a single constant load. Stokes [6] approached the
problem under similar assumptions. The other extreme case, i.e. that of load mass small against the
beam mass, was originally examined for a simply supported beam and a constant concentrated force
by Krylov [7] using the method of expansion of the eigenfunctions, and by Timoshenko [8]. Lowan
[9] and Bondar [10] solved it with the aid of Green’s functions and integral equations respectively.

The problem involving both the load mass and the beam mass, considerably more complicated than
the preceding special cases, was not solved until much later.Jeffcott [11] whose iterative method
becomes divergent in some cases.

In most cases, the classes of non-classical boundary value problems are in general resistant to
the classical methods of solving dynamical problems. Obviously, it becomes more complex and
cumbersome when the dynamical problem involves moving loads with or without consideration
of the inertial effects of the moving loads is taken into consideration. Mindin and Goodman
[12] considered a procedure for extending the method of separation of variables to the solution
of Bernoulli-Euler beam vibration problems with time-dependent boundary conditions. Oni and
Ogunyebi [13] considered the dynamic analysis of a pre-stressed elastic beam with general boundary
conditions under the action of uniformly distributed masses. Biot [14] studied the bending of an
infinite beam resting on elastic foundation. Omolofe [15] investigated the deflection of beams
resting on two parameter elastic foundation. Oni and Awodola [16] investigated behavior of moving
concentrated masses of simply supported rectangular plates on variable Winkler elastic foundation.
Awodola abnd Oni [17] investigated the dynamic response to moving masses of rectangular plates
with general boundary conditions resting on one variable foundation(i.e a Winkler foundation).
Teodoru,Musat and Vrabie [18] carried out study on bending behavior of beams resting on two
parameter elastic foundation by using a finite element method. In the same vein, Oni and Ogunyebi
[19] studied the dynamic analysis of a pre-stressed elastic beam with general boundary conditions
resting on a bi-parametric foundation. In order to improve on [18], Teodoru [20] and [21] used the
finite difference approach and the simplified continuous approach to analysis the behavior of beams
resting on two parameter foundations. Also, Agboola and Gbadeyan [22] considered the dynamic
behavior of a double Rayleigh beam under the influence of uniform partially distributed load.

Though these works are impressive, the non-uniform beams were only subjected to a concentrated
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moving mass under Winkler foundation, thus limiting the scope of applicability of the study since it
is well known that the Winkler foundation predicts discontinuities in the deflections of the surface
of the foundation at the end of a finite beam and in reality, the surface displacements continue
beyond the load (force) region. Some researchers even considered beams resting on variable elastic
foundation but never used the elastically supported boundary conditions used in this research work.

In all the aforementioned, works are based on structures with classical conditions, where the non-
classical boundary conditions are considered, the loads are considered to be concentrated loads and
the foundation taken to be constant.This work however, considers the influence of rotatory inertial
correction factor on the vibration of elastically supported non-uniform Rayleigh beam under moving
distributed load and resting on bi-parametric variable foundation.

2 Governing Equation

Considering the influence of rotatory inertial correction factor on the vibration of elastically supported
Rayleigh beam on variable bi-parametric elastic foundation; the governing equation of motion is
given by the fourth order partial differential equation Fryba [1].

∂2

∂x2
[EI

∂2V (x, t)

∂x2
]−N0

∂2V (x, t)

∂x2
+ µ(x)

∂2V (x, t)

∂t2
− µ(x)R0 ∂

4V (x, t)

∂x2∂t2
+Gf (x, t) = P (x, t). (2.1)

where x is the spatial co-ordinate, t is the time co-ordinate,V (x, t) is the transverse displacement,
EI(x) is the variable flexural rigidity of the structure, µ(x) is the variable mass per unit length of
the non-uniform beam, N0 is the constant axial force, R0 is the rotatory inertial correction factor,
Gf (x, t) is the variable foundation reaction,P (x, t) is the moving distributed load.
The relationship between the foundation reaction and lateral deflection V (x, t) is

Gf (x, t) = S(x, t)V (x, t)− ∂

∂x
[K(x)

∂V (x, t)

∂x
] (2.2)

µ(x) = µ0(1 + sin
πx

L
), I(x) = I0(1 + sin

πx

L
)3 (2.3)

where S(x) and K(x) are two variable parameters of the elastic foundation. That is, S(x) is the
variable foundation stiffness and K(x) is the variable shear modulus.

where

S(x) = S0(4x− 3x2 + x3) (2.4)

K(x) = K0(12− 13x+ 6x2 + x3) (2.5)

substituting equations (2.3), (2.4) and (2.5) into equation (2.1), one obtains

∂2

∂x2

[
EI0(1 + sin

πx

L
)3

∂2

∂x2
V (x, t)

]
−N0

∂2

∂x2
V (x, t) + µ0

(
1 + sin

πx

L

)
∂2

∂t2
V (x, t) + µ0

(
1 + sin

πx

L

)

R0
∂4

∂x2∂t2
V (x, t) + S0

(
4x− 3x2 + x3

)
V (x, t)− ∂

∂x

[
K0(12− 13x+ 6x2 + x3)

∂

∂x
V (x, t)

]

=

N∑
i=1

MgH(x− ct)

[
1− 1

g

∂2

∂t2
V (x, t)

]
(2.6)
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Equation (2.6) can also be re-written as

EI0

[
∂2

∂x2

(
10 + 15 sin

πx

L
− 6 cos

2πx

L
− sin

3πx

L

)
∂2

∂x2
V (x, t)

]
−N0

∂2

∂x2
V (x, t) + µ0

(
1 + sin

πx

L

)
∂2

∂t2
V (x, t) + µ0

(
1 + sin

πx

L

)
R0

∂4

∂x2∂t2
V (x, t) + s0

(
4x− 3x2 + x3

)
V (x, t)− ∂

∂x

[
K0(12− 13x+ 6x2

+ x3)
∂

∂x
V (x, t)

]
+MH(x− ct)

[
∂2

∂t2
+ 2c

∂2

∂x∂t
+ c2

∂2

∂x2

]
V (x, t) = MHg(x− ct)

(2.7)

The boundary condition of the structure under consideration is first taken to be arbitrary and the
inertial condition without any loss of generality is taken as

V (x, 0) = 0 =
∂

∂x
V (x, 0) (2.8)

3 Analytical Approximate Solution

An exact closed form solution of the above fourth order partial differential equation (2.1) does
not exit. Therefore,an approximate solution is sought. The Galerkin’s method is employed, this
technique requires the solution of equation (2.1) takes the form

Vm(x, t) =

N∑
m=1

Wm(t)Um(x) (3.1)

where

Um(x) = sin
λmx

L
+Am cos

λmx

L
+Bm sinh

λmx

L
+ Cm cosh

λmx

L
(3.2)

is the beam function chosen so that the concerned boundary conditions are satisfied.
Substituting equation (3.1) into equation (2.7), one obtains

(3.3)
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In order to get Wm(t), it is required that the expression on the left hand side equation (3.3) is
orthogonal to the function Uk(x), where k is the dummy index. Therefore, one obtains

(3.4)

equation (3.4) can be re-written as

N∑
m=1

([
B0(m, k) +B1(m, k)−R0(B2(m, k) +B3(m, k))

]
Ẅm(t) +QA

[
10B4(m, k) + 15B5(m, k)

+
30π

L
B6(m, k)− 15π2

L2
B7(m, k)− 6B8(m, k) +

24π

L
B9(m, k) +

24π2

L2
B10(m, k)− 6π

L
B11(m, k)−

B12(m, k) +
9π2

L2
B13(m, k)

]
+QBB14(m, k) +

S0

µ0

(
4B15(m, k)− 3B16(m, k) +B17(m, k)

)
− K0

µ0(
− 13B18(m, k) + 12B19(m, k)− 3B20(m, k)

)
− K0

µ0

(
12B21(m, k)− 13B22(m, k) + 6B23(m, k)−

3B24(m, k)

)]
Wm(t) +

M

µ0

[
B25(m, k)Ẅm(t) + 2cB26(m, k)Ẇm(t) + c2B27(m, k)Wm(t)

]
−

Mg

µ0
B28(m, k)

)
= 0

(3.5)

where

QA =
EI0
µ0

, B0(m, k) =

∫ L

0

Um(x)Uk(x)dx,B1(m, k) =

∫ L

0

sin
πx

L
Um(x)Uk(x)dx (3.6)

B2(m, k) =

∫ L

0

U
′′
m(x)Uk(x)dx,B3(m, k) =

∫ L

0

sin
πx

L
U

′′
m(x)Uk(x)dx (3.7)

B4(m, k) =

∫ L

0

U (iv)
m (x)Uk(x)dx,B5(m, k) =

∫ L

0

sin
πx

L
U (iv)

m (x)Uk(x)dx (3.8)

B6(m, k) =

∫ L

0

cos
πx

L
U

′′′
m (x)Uk(x)dx,B7(m, k) =

∫ L

0

sin
πx

L
U

′′
m(x)Uk(x)dx (3.9)

B8(m, k) =

∫ L

0

cos
πx

L
U (′′)

m (x)Uk(x)dx,B9(m, k) =

∫ L

0

sin
πx

L
U

′′′
m (x)Uk(x)dx (3.10)
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B10(m, k) =

∫ L

0

cos
2πx

L
U

′′′
m (x)Uk(x)dx,B11(m, k) =

∫ L

0

cos
3πx

L
U

′′′
m (x)Uk(x)dx (3.11)

B12(m, k) =

∫ L

0

sin
3πx

L
U

′′′
m (x)Uk(x)dx,B13(m, k) =

∫ L

0

sin
3πx

L
U

′′
m(x)Uk(x)dx (3.12)

B14(m, k) =

∫ L

0

U
′′
m(x)Uk(x)dx,B15(m, k) =

∫ L

0

xUm(x)Uk(x)dx (3.13)

B16(m, k) =

∫ L

0

x2Um(x)Uk(x)dx,B17(m, k) =

∫ L

0

x3Um(x)Uk(x)dx (3.14)

B18(m, k) =

∫ L

0

U
′
m(x)Uk(x)dx,B19(m, k) =

∫ L

0

xU
′
m(x)Uk(x)dx (3.15)

B20(m, k) =

∫ L

0

x2U
′
m(x)Uk(x)dx,B21(m, k) =

∫ L

0

U
′′
m(x)Uk(x)dx (3.16)

B22(m, k) =

∫ L

0

xU
′′
m(x)Uk(x)dx,B23(m, k) =

∫ L

0

x2U
′′
m(x)Uk(x)dx (3.17)

B24(m, k) =

∫ L

0

x3U
′′
m(x)Uk(x)dx,B25(m, k) =

∫ L

0

H(x− ct)Um(x)Uk(x)dx (3.18)

B26(m, k) =

∫ L

0

H(x− ct)U
′
m(x)Uk(x)dx,B27(m, k) =

∫ L

0

H(x− ct)U
′′
m(x)Uk(x)dx (3.19)

B28(m, k) =

∫ L

0

H(x− ct)Uk(x)dx (3.20)

In order to evaluate the integrals in equations (3.19) and (3.20), one makes use of the Fourier series
representation for the Heaviside function in the form

H(x− ct) =
1

4
+

1

π

∞∑
n=1

sin(2n+ 1)π(x− ct)

2n+ 1
, 0 < x < 1 (3.21)

substituting equation (3.21) into equation (3.5), after some simplifications and re-arrangements,
one obtains

N∑
m=1

[(
B0(m, k) +B1(m, k)−R0

(
B2(m, k) +B3(m, k)

))
Ẅm(t) +QA

[
10B4(m, k) + 15B5(m, k)+

30π

L
B6(m, k)− 15π2

L2
B7(m, k)− 6B8(m, k) +

24π

L
B9(m, k) +

24π2

L2
B10(m, k)− 6π

L
B11(m, k)−

B12(m, k) +
9π2

L2
B13(m, k)

]
+QB

[
B14(m, k) +

S0

µ0

(
4B15(m, k)− 3B16(m, k) +B17(m, k)

)
− K0

µ0(
− 13B18(m, k) + 12B19(m, k)− 3B20(m, k)

)
− K0

µ0

(
12B21(m, k)− 13B22(m, k) + 6B23(m, k)−

3B24(m, k)

)]
Wm(t) +

M

µ0

(
B25(m, k)Ẅm(t) + 2cB26(m, k)Ẇ(t) + c2B27(m, k)Wm(t)

)]
=

MgL

µ0λk[
− cosλk +Ak sinλk +Bk coshλk + Ck sinhλk + cos

λkct

L
−Ak sin

λkct

L
−Bk cosh

λkct

L

− Ck sinh
λkct

L

]
(3.22)

6



Samuel and Olubunmi; ARJOM, 2(4), 1-22, 2017; Article no.ARJOM.31271

Therefore, equation (3.22) becomes

ω0(m, k)Ẅm(t) + ω1(m, k)Wm(t) + γ

[(
D1(m,k)

4
+ 1

π

∑∞
n=1

cos (2n+1)πct
(2n+1)

D2(n,m, k)

− 1
π

∑∞
n=1

sin(2n+1)πct
(2n+1)

D3(n,m, k)

)
Ẅm(t) + 2c

(
D4(m,k)

4
+ 1

π

∑∞
n=1

cos(2n+1)πct
(2n+1)

D5(n,m, k)−

1
π

∑∞
n=1

sin(2n+1)πct
(2n+1)

D6(n,m, k)

)
Ẇm(t) + c2

(
D7(m,k)

4
+ 1

π

∑∞
n=1

cos(2n+1)πct
(2n+1)

D8(n,m, k)−

1
π

∑∞
n=1

sin(2n+1)πct
(2n+1)

D9(n,m, k)

)
Wm(t)

]
= PL

µ0λk

[
− cosλk

+Ak sinλk +Bk coshλk + Ck sinhλk + cos λkct
L

−Ak sin
λkct
L

−Bk cosh
λkct
L

− Ck sinh
λkct
L

]
(3.23)

where

ω0(m, k) =

[
B0(m, k) +B1(m, k)−R0

(
B2(m, k) +B3(m, k)

)]
(3.24)

ω1(m, k) = QA

[
10B4(m, k) + 15B5(m, k) +

30π

L
B6(m, k)− 15π2

L2
B7(m, k)− 6B8(m, k) +

24π

L
B9(m, k) +

24π2

L2
B10(m, k)− 6π

L
B11(m, k)−B12(m, k) +

9π2

L2
B13(m, k)

]
+QB

[
B14(m, k) +

S0

µ0
[4B15(m, k)− 3B16(m, k) +B17(m, k)

]
− K0

µ0

(
− 13B18(m, k) + 12B19(m, k)− 3B20(m, k)

)
−

K0

µ0

(
12B21(m, k)− 13B22(m, k) + 6B23(m, k)− 3B24(m, k)

)]
(3.25)

γ =
M

µ0L
,P = Mg (3.26)

equation (3.24) is re-written as

Ẅm(t) +
ω1(m, k)

ω0(m, k)
Wm(t) +

γ

ω0(m, k)

[(
D1(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D2(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D3(n,m, k)

)
Ẅm(t) + 2c

(
D4(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D5(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D6(n,m, k)

)
Ẇm(t) + c2

(
D7(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D8(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D9(n,m, k)

)
Wm(t)

]
=

PL

µ0ω0(m, k)λk

[
− cosλk +Ak sinλk +

Bk coshλk + Ck sinhλk + cos
λkct

L
−Ak sin

λkct

L
−Bk cosh

λkct

L
− Ck sinh

λkct

L

]
(3.27)
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equation (3.26) is the transformed equation governing the problem of the vibration of the non-
uniform Rayleigh beam under moving distributed masses and resting on variable bi-parametric
elastic foundation. This coupled non-homogeneous second order ordinary differential equation is
assumed to have arbitrary boundary conditions.

Case I: Moving Force Problem

In moving force problem, only the load being transferred to the structure. In this case, the inertia
effect is negligible. Setting γ = 0 in the transformed equation (3.27),one obtains

(3.28)

equation (3.28) can be re-written as,

Ẅm(t) + θ2mWm(t) =
PL

µ0ω0(m, k)λk

[
βk + cos

λkct

L
−Ak sin

λkct

L
−Bk cosh

λkct

L
−

Ck sinh
λkct

L

]
(3.29)

where

θ2m =
ω1(m, k)

ω0(m, k)
, βk = − cosλk +Ak sinλk +Bk coshλk + Ck sinhλk (3.30)

equation (3.29) is an approximate model, which assumes the inertia effect of the moving mass as
negligible.

Further re-arrangement of equation (3.29) yields

Ẅm(t) + θ2mWm(t) =
PL

µ0ω0(m, k)λk
[βk + cosαk −Ak sinαk −Bk coshαk − Ck sinhαk] (3.31)

where

αk =
λkct

L
(3.32)

solving equation (3.31) using Laplace transformation and convolution theory and taking into account
equation (2.4), one obtains

(3.33)
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equation (3.33) represents the transverse deflection of the non-uniform Rayleigh beam under moving
distributed force and resting on variable Pasternak elastic foundation.

Case II: Moving Mass Problem

In moving mass problem, the moving load is assumed rigid, and the weight and as well as inertia
forces are transferred to the moving load. That is, the inertia effect is not negligible. Thus, γ ̸= 0
and and so it is required to solve the entire equation (3.27). Thus, equation (3.27) takes the form

Ẅm(t) +
ω1(m, k)

ω0(m, k)
Wm(t) +

γ

ω1(m, k)

[(
D1(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D2(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D3(n,m, k)

)
Ẅm(t) + 2c

(
D4(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D5(n,m, k)

− 1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D6(n,m, k)

)
Ẇm(t) + c2

(
D7(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D8(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D9(n,m, k)

)
Wm(t)

]
=

PL

µ0ω0(m, k)λk

[
βk + cosαk −Ak sinαk −Bk coshαk

−Ck sinhαk

]
(3.34)

On further re-arrangements, one obtains

(3.35)

Indisputably, unlike the moving force problem, an exact analytical solution to equation (3.35) is not
possible. In order to obtain approximate analytical solution, one makes use of a modification of the
asymptotic method of Struble. By this method, one seeks the modified frequency corresponding to
the frequency of the free system due to the presence of the effect of the moving mass. An equivalent
system operator defined by the modified frequency then replaces equation (3.35).
We shall consider a parameter γ0 < 1 for any arbitrary mass ratio defined by

γ0 =
γ

1 + γ
(3.36)

9
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By using binomial theorem and truncating after second terms, one obtains

γ0 = γ − 0(γ2) (3.37)

equation (3.37) becomes

γ0 = γ (3.38)

to 0(γ) only
and from equation (3.35)

1

1 + γ
ω0(m,k)

(D1(m,k)
4

+ 1
π

∑∞
n=1

cos (2n+1)πct
(2n+1)

D2(n,m, k)− 1
π

∑∞
n=1

sin (2n+1)πct
(2n+1)

(3.39)

becomes

[1− γ

ω0(m, k)
(
D1(m, k)

4
+

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D2(n,m, k)− 1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D3(n,m, k))]

(3.40)

| γ

ω0(m, k)
(
D1(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D2(n,m, k)− 1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D3(n,m, k))| < 1

(3.41)
substituting equations (3.40) and (3.41) into equation (3.35), one obtains

Ẅm(t) + 2cγ0

(
D4(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D5(n,m, k)− 1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D6(n,m, k)

)

Ẇm(t) +

[
θ2m − θ2mγ0

(
ω1(m, k)

ω0
+

[(
D1(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D2(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D3(n,m, k)

)
+ c2γ0

(
D7(m, k)

4
+

1

π

∞∑
n=1

cos (2n+ 1)πct

(2n+ 1)
D8(n,m, k)−

1

π

∞∑
n=1

sin (2n+ 1)πct

(2n+ 1)
D9(n,m, k)

)]
Wm(t) =

PL

µ0ω0(m, k)λk

[
βk + cosαk −Ak sinαk

−Bk coshαk − Ck sinhαk

]
(3.42)

to 0(γ0) only

Applying method of Struble technique to equation (3.42), one obtains

d2

dt2
Wm(t)+θmmWm(t) =

PL

µ0ω0(m, k)λk

[
βk+cosαk−Ak sinαk−Bk coshαk−Ck sinhαk

]
(3.43)

where

θmm = θm

(
1− γ0

2

[
θmD1(m, k)

4ω0(m, k)
− c2D7(m, k)

4θ2mω0(m, k)

])
(3.44)

solving equation (3.43) using Laplace transformation and convolution theory and taking into account
equation (2.4), one obtains

10
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(3.45)

equation (3.45) represents the transverse deflection of the non-uniform Rayleigh beam under moving
distributed mass and resting on variable Pasternak elastic foundation.

4 Discussion of the Analytical Solutions

For this undamped system, it is desirable to examine the phenomenon of resonance. From equation
(3.33), it is clearly shown that the beam resting on variable bi-parametric elastic foundation and
traversed by a moving distributed force reaches a state of resonance whenever

θm = αk (4.1)

where

αk =
λkc

L
(4.2)

that is

θm =
λkc

L
(4.3)

equation (3.45) shows that the same beam under the action of moving distributed mass experiences
resonance effect whenever

θmm =
λkc

L
(4.4)

From equation (3.44)

θm

(
1− γ0

2

[
θmD1(m, k)

4ω0(m, k)
− c2D7(m, k)

4θ2mω0(m, k)

])
=

λkc

L
(4.5)

It is therefore clear that for the same natural frequency, the critical speed for the system consisting of
elastically supported non-uniform Rayleigh beam resting on variable elastic foundation and traverse
by moving distributed force with uniform speed is greater than that of moving distributed mass
problem. Thus,for the same natural frequency, resonance is reached faster in the moving distributed
mass system than in the moving distributed force system.

5 Illustrative Examples

a. Clamped Elastic Boundary Conditions
At the clamped end, both the deflection and the slope vanish. Thus, when the Rayleigh beam is
clamped at x = 0 and elastically supported at x = L, the conditions are expressed as

V (0, t) = 0 = V
′
(0, t) (5.1)

11
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at the end x = 0
V

′′
(L, t)− k1V

′
(L, t) = 0 = V

′′′
(L, t)− k2V (L, t) (5.2)

at the end x = L
and for the normal modes

Um(0) = 0 = U
′
m(0) (5.3)

at the end x = 0 and
U

′′
m(L)− k1U

′
m(L) = 0 = U

′′′
m (L)− k2Um(L) (5.4)

at the end x = L
which implies that

Uk(0) = 0 = U
′
k(0) (5.5)

and
U

′′
k (L)− k1U

′
k(L) = 0 = U

′′′
k (L)− k2Uk(L) (5.6)

using equations (5.3) and (5.4), it can be shown that at x = 0 ,

Am = −Cm, Bm = −1 (5.7)

and at x = L , using equation (5.6)

Am =
λm
L

[sinλm + sinhλm] + k1[cosλm − coshλm]
λm
L

[cosλm + coshλm]− k1[sinλm + sinhλm]
=

λ3
m

L3 [cosλm + coshλm] + k2[sinhλm − sinλm]
−λ3

m
L3 [sinλm − sinhλm] + k2[cosλm − coshλm]

= −Cm (5.8)

From equation (5.8), one obtains
tanλm = tanhλm (5.9)

Hence, we have
λ1 = 3.927, λ2 = 7.069, λ3 = 10.21, ... (5.10)

putting equations (5.7), (5.8) and (5.10) into equations (3.33) and (3.45), one obtains the displacement
response respectively to a moving force and a moving mass of clamped elastic ends Rayleigh beam
on a variable foundation.

b. Elastically Supported Conditions at Both Ends

For the case when the beam is elastically supported both at x = 0 and x = L, the conditions
are expressed as

V
′′
(0, t)− k1V

′
(0, t) = 0 = V

′′′
(0, t) + k2V (0, t) (5.11)

at x = 0 and
V

′′
(L, t)− k1V

′
(L, t) = 0 = V

′′′
(L, t) + k2V (L, t) (5.12)

at x = L
Similarly, for normal modes

U
′′
m(0)− k1U

′
m(0) = 0 = U

′′′
m (0) + k2Um(0) (5.13)

at x = 0 and
U

′′
m(L)− k1U

′
m(L) = 0 = U

′′′
m (L) + k2Um(L) (5.14)

at x = L
which implies that

U
′′
k (0)− k1U

′
k(0) = 0 = U

′′′
k (0) + k2Uk(0) (5.15)

12
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at x = 0 and

U
′′
k (L)− k1U

′
k(L) = 0 = U

′′′
k (L) + k2Uk(L) (5.16)

at x = L
using equations (5.13) and (5.14), it can be shown that

Cm =
[λm

L
− k1r2] sinλm + [k1 +

r2λm
L

] cosλm − r1λm
L

sinhλm + k1r1 coshλm

k1r1 sinλm − r1λm
L

cosλm + [ r3λm
L

− k1] sinhλm + [λm
L

− k1r3] coshλm

= −
[
r2λ

3
m

L3 + k2] sinλm + [
λ3
m

L3 − k2r2] cosλm − k2r1 sinhλm − r1λ
3
m

L3 coshλm

r1λ3
m

L3 sinλm + k2r1 cosλm + [
λ3
m

L3 + k2r3] sinhλm + [
r3λ3

m
L3 + k2] coshλm

(5.17)

Am = r1Cm + r2, Bm = r3Cm + r1 (5.18)

where

r1 =

λ4
m

L4 + k1k2
λ4
m

L4 − k1k2
, r2 =

− 2k1λ
3
m

L3

λ4
m

L4 − k1k2
, r3 =

− 2k1λm
L

λ4
m

L4 − k1k2
(5.19)

using equations (5.17), (5.18) and (5.19), the modified frequency equation for the dynamical problem
is obtained as

tanλm = tanhλm (5.20)

Hence, we have

λ1 = 3.927, λ2 = 7.069, λ3 = 10.21, ... (5.21)

substituting equations (5.17), (5.18), (5.19) and (5.20) into equations (3.33) and (3.45), one obtains
the displacement response respectively to a moving force and a moving mass of Rayleigh beam
elastically supported at both ends on a variable foundation.

6 Numerical Results and Discussions

To illustrate the analysis presented in this work, the non-uniform Rayleigh beam is taken to
be of length L = 12.192m, the load velocity c = 8.128m/s and modulus of elasticity E0 =
2.109× 109kg/m, the moment of inertia I0 = 2.37698× 10−3m4.

a. Graphs for Clamped-Elastic Boundary Conditions

Figs 1 and 2 display the effect of foundation modulus S0 on the deflection profile of clamped
elastic Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of S0 increases.
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Fig. 1. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed force for values of R0 = 30,

N0 = 20000, K0 = 20000000 and various values of S0

Fig. 2. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed mass for values of R0 = 30,

N0 = 20000, K0 = 20000000 and various values of S0

Figs 3 and 4 display the effect of shear modulus K0 on the deflection profile of clamped elastic
Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of K0 increases.
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Fig. 3. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed force for values of R0 = 30,

N0 = 20000, S0 = 300000000 and various values of K0

Fig. 4. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed mass for values of R0 = 30,

N0 = 20000, S0 = 300000000 and various values of K0

Figs 5 and 6 display the effect of rotatory inertia R0 on the deflection profile of clamped elastic
Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of R0 increases.
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Fig. 5. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed force for values of K0 = 20000000,

N0 = 20000, S0 = 300000000 and various values of R0

Fig. 6. Deflection profile of a clamped elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed mass for values of K0 = 20000000,

N0 = 20000, S0 = 300000000 and various values of R0

For the purpose of comparison, Fig 7 shows the displacement curves of moving distributed force
and moving distributed mass for fixed values of rotatory inertia, foundation modulus and shear
modulus for clamped elastic boundary conditions. The graph shows that the response amplitude of
a moving mass is greater than that of a moving force problem.
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Fig. 7. Comparison of the deflections of moving distributed force and moving
distributed mass for clamped elastic boundary conditions

b. Graphs for Elastic-Elastic Boundary Conditions

Figs 8 and 9 display the effect of foundation modulus S0 on the deflection profile of elastic-elastic
Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of S0 increases.

Fig. 8. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed force for values of R0 = 0, N0 = 20000,

K0 = 20000000 and various values of S0
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Fig. 9. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on variable
foundation and traversed by moving distributed mass for values of R0 = 0, N0 = 20000,

K0 = 20000000 and various values of S0

Figs. 10 and 11 display the effect of shear modulus K0 on the deflection profile of elastic-elastic
Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of K0 increases.

Fig. 10. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on
variable foundation and traversed by moving distributed force for values of R0 = 30,

N0 = 20000, S0 = 300000000 and various values of K0
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Fig. 11. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on
variable foundation and traversed by moving distributed mass for values of R0 = 30,

N0 = 20000, S0 = 300000000 and various values of K0

Figs. 12 and 13 display the effect of rotatory inertia R0 on the deflection profile of elastic-elastic
Rayleigh beam under the action of load moving at constant velocity in both cases of moving
distributed forces and moving distributed masses respectively. The graphs show that the response
amplitudes decrease as the value of R0 increases.

Fig. 12. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on
variable foundation and traversed by moving distributed force for values of

K0 = 20000000, N0 = 20000, S0 = 300000000 and various values of R0
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Fig. 13. Deflection profile of an elastic-elastic non-uniform Rayleigh beam on
variable foundation and traversed by moving distributed mass for values of

K0 = 20000000, N0 = 20000, S0 = 300000000 and various values of R0

For the purpose of comparison, Fig. 14 shows the displacement curves of moving distributed force
and moving distributed mass for fixed values of rotatory inertia, foundation modulus and shear
modulus for elastic-elastic boundary conditions. The graph shows that the response amplitude of
a moving mass is greater than that of a moving force problem.

Fig. 14. Comparison of the deflections of moving distributed force and moving
distributed mass for elastic-elastic boundary conditions
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7 Conclusion

In this research work, the problem concerning the influence of rotatory inertia correction factor on
the vibration of elastically supported non uniform Rayleigh beam under moving distributed mass
and resting on bi-parametric elastic foundation has been studied. The closed form solutions of the
fourth order partial differential equations with variable and singular co-efficients are obtained for
both cases of moving force and moving mass. The solutions are analyzed and resonance conditions
are obtained for the problem. The results in plotted curves show the influence of rotatory inertial
correction factor as well as the shear modulus and foundation modulus on the beam for both cases
of moving distributed force and moving distributed mass.
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