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1 Introduction

During the past few decades, the development of evolutionary problems in biology, ecology and
biochemistry, and the traditional importance of these systems in physics, heat-mass transfer lead
to extensive study in various aspects of nonlinear parabolic partial differential equations. A special
topic of the analysis is the finite time blow-up phenomena of solutions. The papers referenced here
have been investigated in the questions of existence and nonexistence of global solutions, blow-up
of solutions, blow-up rates and bounds on blow-up time, and asymptotic behavior of solutions to
semilinear and nonlinear problems. In this work we consider the following nonlocal initial boundary
value problem,

ut − γ∆ut +∆(|∆u|p−2∆u) = f(|u|)− 1
m(Ω)

∫
Ω
f(|u|)dx (x, t) ∈ Ω× (0, t∗),

|∆u|p−2 ∂u
∂ν

= |∆u|p−2 ∂∆u
∂ν

= 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) x ∈ Ω̄,

(1.1)

where Ω ⊂ RN(N ≥ 1) is a bounded domain with smooth boundary ∂Ω, f : [0,∞) 7→ [0,∞)
is a locally Lipschitz function, m(Ω) represents the Lebesgue measure of the domain Ω, γ ≥ 0,
max[1, 2N

N+4
] < p ≤ 2 such that W 2,p(Ω) ↩→ L2(Ω), u0(x) ∈ L∞(Ω) ∩W 2,p(Ω),

∫
Ω
u0(x)dx = 0.

The particular case where γ = 0 and f is a power function of the form f(u) = uq, with 0 < q ≤ 1
was recently considered in [1]. In fact, the authors in [1] considered the following p-biharmonic
parabolic equation with nonlocal source

ut +∆(|∆u|p−2∆u) = |u|q − 1
m(Ω)

∫
Ω
|u|qdx (x, t) ∈ Ω× (0, t∗),

|∆u|p−2 ∂u
∂ν

= |∆u|p−2 ∂∆u
∂ν

= 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) x ∈ Ω̄,

(1.2)

where Ω is a bounded domain of RN(N ≥ 1) with smooth boundary ∂Ω, m(Ω) represents the
Lebesgue measure of the domain Ω, max[1, 2N

N+4
] < p ≤ 2 such that W 2,p(Ω) ↩→ L2(Ω), u0(x) ∈

L∞(Ω) ∩ W 2,p(Ω),
∫
Ω
u0(x)dx = 0. They established the blowup, extinction and non-extinction

results for the solutions to (1.1).

Moreover, a thin film equation with similar nonlocal reaction term was considered by authors in [2]
ut + uxxxx = |u|p−1u− 1

m(Ω)

∫
Ω
|u|p−1udx (x, t) ∈ Ω× (0, t∗),

ux = uxxx = 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) x ∈ Ω̄,

(1.3)

where Ω = (0, a), p > 1, and u0 ∈ H2(Ω), with u0 ̸= 0. By potential well method they obtain a
threshold result of global existence and non-existence for the sign-changing weak solutions.

Also, an evolutionary problem with diffusion term involving p-Laplacian operator was considered
in [3]. The authors in [3] considered the following evolutionary problem

ut +∆pu = f(|u|)− 1
m(Ω)

∫
Ω
f(|u|)dx (x, t) ∈ Ω× (0, t∗),

|∇u|p−2 ∂u
∂n

= 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) x ∈ Ω̄,

(1.4)

where Ω ⊂ RN is a bounded regular domain, and ∆p, for p ≥ 2, is the p-Laplacian operator.
They studied the generalized convex functions and established the energetic criterion for blow-up
solutions to (1.3). Further studies of generalized convexity can be seen in [4],[5].

Furthermore, in [6], a semilinear pseudo-parabolic equation was considered as follows
ut −∆u−∆ut = up (x, t) ∈ Ω× (0, t∗),
u(x, t) = 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) ≥ 0 x ∈ Ω̄,

(1.5)
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where Ω ⊂ RN is a bounded domain with smooth boundary, u0(x) ∈ H1
0 (Ω). By means of

differential inequality technique, they establish a blow up criterion and obtain bounds for blow
up time under appropriate conditions. A more general equation was considered in [7] and further
results were obtained.

The problems of type (1.1) arise naturally in mechanics, biology, and population dynamics. See
[8]-[14]. For example, if we consider a couple or a mixture of two equations of the above type,
the resulting problem describes the temperatures of two substances which constitute a combustible
mixture, or represents a model for the behavior of densities of two diffusion biological species which
interact each other. On the other hand, the blow-up phenomena of evolutionary problems with
nonlocal source |u|q − 1

m(Ω)

∫
|u|qdx were studied in a lot of papers, as appeared in [15],[16],[17].

As in [1], we consider the weak solutions as follows:

Definition 1.1 A function u(x, t) ∈ L∞(0, T ;L∞(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) is said to be a weak
solution to the problem (1.1), if ut ∈ L2(0, T ;L2(Ω) and for any φ ∈ L(0, T, ;W 2,p(Ω)) with
∂φ
∂ν

|∂Ω = 0, there holds∫ T

0

∫
Ω

[utφ+∇φ∇ut + |∆u|p−2∆u∆φ− (f(|u|)− 1

m(Ω)

∫
Ω

f(|u|)dx)φ]dxdt = 0 (1.6)

The local existence of the weak solution can be obtained by using Galerkin approximation method.
Let u(x, t) be the weak solution to the problem (1.1).

Motivated by the above works, we intend to study the blow-up phenomena and quenching behavior
of the solution to problem (1.1). Here we take γ = 1 for simplicity. Similar results can be obtained
for any positive γ. In detail, the paper is organized as follows: in Section 2, we derive conditions on
the data of problem (1.1) sufficient to instigate the blow up of u(x, t). In Section 3, we derive
conditions on the data of problem (1.1) sufficient to ensure the non-extinction and extinction
property of u(x, t). In Section 4, we consider another type of p-biharmonic equation and derive
the corresponding criterions which differ from results of above equation.

2 The Blow-up Solution

In this section, we determine a condition sufficient to ensure the solution blows up at finite time.

According to Hermite-Hadamard inequality, the mean value of a continuous convex function f :
[a, b] → R lies between the value of f at the midpoint of the interval [a, b] and the arithmetic mean
of the values of f at the endpoints of this interval, that is,

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (HH)

Moreover, each side of this double inequality characterizes convexity in the sense that a real-valued
continuous function f defined on an interval I is convex if its restriction to each compact subinterval
[a, b] ⊂ I verifies the left hand side of (HH)(equivalently, the right hand side of (HH)).

In what follows we will be interested in a class of generalized convex functions defined in [3]
motivated by the right hand side of the Hermite-Hadamard inequality.

Definition 2.1. A real-valued function f defined on an interval [a,∞) belongs to the class GCα(for
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some α > 0), if it is continuous, nonnegative, and

1

t− a

∫ t

a

f(x)dx ≤ 1

α+ 1
f(t) for t large enough. (2.1)

It is not difficult to see that by simple calculation the condition (2.1) is equivalent to the fact that
the ratio

1
t−a

∫ t

a
f(x)dx

(t− a)α
(2.2)

is nondecreasing for t bigger than a suitable value A ≥ a, which implies that the mean value
1

t−a

∫ t

a
f(x)dx has a polynomial growth at infinity.

Here we define auxiliary functions

E(u(t)) =

∫
Ω

(
1

p
|∆u|p −

∫ u

0

f(|τ |)dτ)dx, h(t) = 1

2

∫
Ω

u2 + |∇u|2dx,H(t) =

∫ t

0

h(s)ds (2.3)

where u is the solution of (1.1). We first start by noticing that each solution of the problem above
has the property ∫

Ω

udx = 0

because the integral in the right hand side of the first equation in (1.1) is 0 and

d

dt
(

∫
Ω

udx) =

∫
Ω

utdx

=

∫
Ω

−∆(|∆u|p−2∆u) + ∆utdx = 0

Hence, by the initial condition
∫
Ω
u0dx = 0, we have

∫
Ω
udx = 0.

Throughout this paper, the norm of Lr(Ω) is denoted by ∥ · ∥r. Since W 2,p(Ω) ↩→ L2(Ω) and∫
Ω
udx = 0. The optimal embedding constant B exists such that

∥ u ∥2≤ B ∥ ∆u ∥p . (2.4)

Furthermore, it is not difficult to obtain the following equality∫ t

0

∫
Ω

|us|2 + |∇us|2dxds+ E(t) = E(0) (2.5)

According to this formula, if the initial energy E(u0) is non-positive, then E(u(t)) is non-positive
for all t > 0. In the case of generalized convex functions of order α, we have

C

∫
Ω

uf(| u |)dx ≥
∫
Ω

∫ u

0

f(| t |)dtdx ≥ 1

p

∫
Ω

| ∆u |p dx. (2.6)

where C = 1
1+α

.

The main result of this section is the following theorem.

Theorem 2.1. Let u be the solution of problem (1.1). Assume that f : [0,∞) 7→ [0,∞) is a
locally Lipschitz function belonging to the class GCα, with p < 1 + α, and let u be a solution of
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the problem (1.1) corresponding to an initial data u0 ∈ C(Ω̄), u0 not identically zero. If E(u0) ≤ 0,
then there is T > 0 such that

lim sup
t→T−

h(t) = ∞ (2.7)

Notice that the condition E(u0) ≤ 0 in Theorem 2.1 is also necessary for the blow-up in finite time.
In fact, (2.5) forces that

inf[E(u(t)) : 0 < t < T ] = −∞.

This can be argued by contradiction. If E(u(t)) ≥ −C0, for some C0 > 0, then we have

h′(t) =

∫
Ω

uut + |∇u||∇ut|dx ≤ 1

2

∫
Ω

(u2 + u2
t + |∇u|2 + |∇ut|2)dx ≤ (h(t)− E′(u(t)))

which yields

(h(t) + E(u(t)) + C0)
′ ≤ h(t) ≤ h(t) + E(u(t)) + C0.

Therefore,

h(t) ≤ h(t) + E(u(t)) + C0 ≤ (h(0) + E(u0) + C0)e
t, for all t ∈ (0, T ).

and thus h(t) is bounded.

The proof of Theorem 2.1 needs a preparation.

Lemma 1. Under the assumptions of Theorem 2.1, with C = 1
α+1

, the two auxiliary functions h(t)
and H(t) verify the following two conditions:

h′(t) ≥ 1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt; (2.8)

1

2C
(H ′(t)−H ′(0))2 ≤ H(t)H ′′(t). (2.9)

Proof. By differentiation and the generalized convexity (2.6), we obtain

h′(t) =

∫
Ω

uut + |∇u||∇ut|dx

=

∫
Ω

u(−∆(|∆u|p−2∆u) + f(|u|))dx

=

∫
Ω

−|∆u|p + uf(|u|)dx

≥
∫
Ω

(−|∆u|p +
1

C

∫ u

0

f(t)dt)dx

= − 1

C

∫
Ω

(
1

p
|∆u|p −

∫ u

0

f(|τ |)dτ)dx+ (
1

Cp
− 1)

∫
Ω

|∆u|pdx.

(2.10)

5



Zhi and Yang; JAMCS, 24(2): 1-14, 2017; Article no.JAMCS.35755

Hence,

h′(t) ≥ − 1

C
E(u) + (

1

Cp
− 1)

∫
Ω

|∆u|pdx

≥ − 1

C
E(u)

= − 1

C
E(u0) +

1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt

≥ 1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt.

Since

H ′(t)−H ′(0) =

∫ t

0

h′(s)ds =

∫ t

0

∫
Ω

uut + |∇u||∇ut|dxdt

≤ (

∫ t

0

∫
Ω

u2dxdt)1/2(

∫ t

0

∫
Ω

u2
tdxdt)

1/2 + (

∫ t

0

∫
Ω

|∇u|2dxdt)1/2(
∫ t

0

∫
Ω

|∇ut|2dxdt)1/2

≤ (H(t))1/2(2Ch′(t))1/2 = (2CH(t)H ′′(t))1/2,

by (2.10) we infer that

H ′(t)−H ′(0) =

∫ t

o

h′(s)ds ≥ 0,

and thus
1

2C
(H ′(t)−H ′(0))2 ≤ H(t)H ′′(t). 2

Proof of Theorem 2.1. Assume the contrary, that the solution u(x, t) exists for all T > 0. For
any t0 > 0, we claim that ∫ t0

0

∫
Ω

|us|2 + |∇us|2dxds > 0. (2.11)

Otherwise, there exists a t0 > 0 such that
∫ t0
0

∫
Ω
|us|2 + |∇us|2dxds = 0, and hence ut = ∇ut = 0

for a.e.(x, t) ∈ Ω × (0, t0). Then it follows from (2.10) that
∫
Ω
|∆u|pdx =

∫
Ω
uf(|u|)dx for a.e.

t ∈ (0, t0), thus we get from (2.5) that

E(t) ≥ (
1

p
− C)

∫
Ω

|∆u|pdx

for a.e. t ∈ (0, t0), which combines E(t) ≤ E(0) ≤ 0 and p < 1 + α imply
∫
Ω
|∆u|pdx = 0

for a.e. t ∈ (0, t0). By (2.4), we have ∥u(·, t)∥2 = 0 for a.e. t ∈ (0, t0). Furthermore, since
u ∈ C([0, t0], L

2(Ω)), we obtain ∥u(·, t)∥2 = 0 for all t ∈ [0, t0], especially ∥u0∥2 = 0, which
contradicts to the assumption ∥u0∥ > 0. Then (2.11) follows.

Fix t0 > 0, and let δ =
∫ t0
0

∫
Ω
|us|2 + |∇us|2dxds. By (2.11), we know that δ is a positive constant.

Integrating (2.8) over (t0, t), we obtain

h(t) ≥ h(t0) +
1

C

∫ t

t0

∫ s

0

∫
Ω

|uτ |2 + |∇uτ |2dxdτds

≥
∫ t

t0

∫ s

0

∫
Ω

|uτ |2 + |∇uτ |2dxdτds ≥ δ(t− t0).
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Hence,

lim
t→∞

H ′(t) = lim
t→∞

h(t) = +∞.

which yields, for each β ∈ (0, 1
C
), the existence of a number T0 > 0 such that for all t > T0,

βH ′(t)2 ≤ 1

C
(H ′(t)−H ′(0))2.

Now, by (2.9) we obtain

βH ′(t)2 ≤ 2H(t)H ′′(t).

We will show, by considering the function G(t) = H(t)−q, for a suitable q > 0, that the last
inequality leads to a contradiction. In fact,

G′′(t) = qH(t)−q−2((q + 1)(H ′(t))2 −H(t)H ′′(t))

≤ qH(t)−q−2(
2(q + 1)

β
− 1)H(t)H ′′(t)

for all t > T0, so that for β ∈ (0, 1/C) and q ∈ (0, 1/(2C) − 1) with 2(q + 1) < β < 1/C, the
corresponding function G(t) is concave.

By (2.9), limt→∞ H(t) = ∞, whence limt→∞ G(t) = 0. Thus G provides an example of a concave
and strictly positive function which tends to 0 at infinity, a fact which is not possible. Consequently,
u may blow up at some finite time T . Thus completes the proof.

3 Non-extinction and Extinction Criterion

First, we determine sufficient conditions to ensure the solution to problem (1.1) does not extinct.
The main result of this section is as follows.

Theorem 3.1. Let u be the solution of problem (1.1). Assume that f : [0,∞) 7→ [0,∞) is a locally
Lipschitz function belonging to the class GCα, with p > 1+α, and let u be a solution of the problem
(1.1) corresponding to an initial data u0 ∈ C(Ω̄), u0 not identically zero. If E(u0) ≤ 0, then the
solution to problem(1.1) does not extinct in finite time.
The proof of Theorem 3.1 needs a preparation.

Lemma 3.1. ([15], Lemma 1.2) Suppose that θ > 0, a > 0, b > 0 and h(t) is a nonnegative and
absolutely continuous function satisfying h′(t) + ahθ(t) ≥ b, then for 0 < t < ∞, it holds

h(t) ≥ min[h(0), (
b

a
)
1
θ ].

7
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Proof of Theorem 3.1. By differentiation and the generalized convexity (2.6), we obtain

h′(t) = −
∫
Ω

|∆u|p +

∫
Ω

uf(u)dx

= −pE(u)− p

∫
Ω

∫ u

0

f(|τ |)dτdx+

∫
Ω

uf(|u|)dx

≥ −pE(u0) + (1− pC)

∫
Ω

uf(|u|)dx

≥ −pE(u0) + (1− pC)(

∫
Ω

u2)
1
2 (

∫
Ω

f2dx)
1
2

≥ −pE(u0) +Ah
1
2 (t)

(3.1)

where A = (1− pC)(
∫
Ω
f2dx)

1
2 .

Therefore, by Lemma 3.1 and E(u0) < 0, we have

h(t) ≥ min[h(0), (
−pE(u0)

A
)2], t > 0.

Since h(0) > 0, a > 0, E(u0) < 0, we get h(t) > 0 for all t > 0. 2

Then we derive certain conditions to ensure the quenching behavior of the solution to (1.1) in a
particular case.

Lemma 3.2. Assume 0 < l < r ≤ 1, α ≥ 0, β ≥ 0 and φ(t) is a nonnegative and absolutely
continuous function, which satisfies{

φ′(t) + αφl(t) ≤ βφr(t), t ≥ 0,
φ(0) > 0, βφr−1(0) < α,

(3.2)

then it holds {
φ(t) ≤ [−α0(1− l)t+ φ1−l(0)]

1
1−l , 0 < t < T0,

φ(t) ≡ 0, t ≥ T0

(3.3)

where α0 = α− βφr−l(0) > 0 and T0 = α−1
0 (1− l)−1φ1−l(0).

Theorem 3.2. Let u(x, t) be the solution of (1.1). Assume the following conditions on f and
p, q, γ:

f(s) ≤ κsq, κ > 0, p− 1 < q ≤ 1, γ = 0 (3.4)

Moreover, we assume the initial data satisfy the condition

0 < κ ∥ u0 ∥q+1−p
2 < B−p|Ω|

q−1
2

Then the solution to (1.1) quenches in finite time. Furthermore, we have the following estimates:{
∥u(t)∥2 ≤ [∥u0∥2−p

2 − (2− p)(B−p − κ|Ω|
1−q
2 ∥u0∥q+1−p

2 )t]
1

2−p , 0 < t < T∗
∥u∥2 = 0, t ≥ T∗

(3.5)

8
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where T∗ = [(2− p)(B−p − κ | Ω |
1−q
2 ∥u0∥q+1−p

2 )]−1∥u0∥2−p
2 .

Proof of Theorem 3.2. Multiply the first equation of (1.1) by u and integrate over Ω, we have

1

2

d

dt

∫
Ω

u2dx+

∫
Ω

|∆u|pdx =

∫
Ω

uf(|u|)dx.

Define φ(t) = 1
2

∫
Ω
u2dx, then the above equation is equivalent to the following inequality

φ′(t) +

∫
Ω

|∆u|pdx =

∫
Ω

uf(|u|)dx.

By (2.4), (3.4) and Holder’s inequality we have

φ′(t) + 2
p
2 B−pφ

P
2 (t) ≤ 2

q+1
2 κ|Ω|

1−q
2 φ

q+1
2 (t). (3.6)

Then the conclusion follows by ∥u(·, t)∥2 =
√

2φ(t) and Lemma 3.2. 2

4 Another Case

In this section, we consider a different kind of p-biharmonic parabolic equation as follows,
ut − γ∆ut −∆(|∆u|p−2∆u) = f(|u|)− 1

m(Ω)

∫
Ω
f(|u|)dx (x, t) ∈ Ω× (0, t∗),

|∆u|p−2 ∂u
∂ν

= |∆u|p−2 ∂∆u
∂ν

= 0 (x, t) ∈ ∂Ω× (0, t∗),
u(x, 0) = u0(x) x ∈ Ω̄,

(4.1)

where Ω ⊂ bfRN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, f : [0,∞) 7→ [0,∞)
is a locally Lipschitz function, m(Ω) represents the Lebesgue measure of the domain Ω, γ ≥ 0,
max[1, 2N

N+4
] < p ≤ 2 such that W 2,p(Ω) ↩→ L2(Ω), u0(x) ∈ L∞(Ω) ∩W 2,p(Ω),

∫
Ω
u0(x)dx = 0.

We first consider the weak solutions as follows:

Definition 4.1. A function u(x, t) ∈ L∞(0, T ;L∞(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) is said to be a weak
solution to the problem (1.1), if ut ∈ L2(0, T ;L2(Ω) and for any φ ∈ L(0, T, ;W 2,p(Ω)) with
∂φ
∂ν

|∂Ω = 0, there holds∫ T

0

∫
Ω

[utφ+∇φ∇ut − |∆u|p−2∆u∆φ− (f(|u|)− 1

m(Ω)

∫
Ω

f(|u|)dx)φ]dxdt = 0 (4.2)

The local existence of the weak solution can be obtained by using Galerkin approximation method.
Let u(x, t) be the weak solution to the problem (4.1). As in above sections, we intend to study the
blow-up phenomena and quenching behavior of the solution to problem (4.1). We take γ = 1 for
simplicity since similar results can be obtained for any positive γ.

We define auxiliary functions

E(u(t)) =

∫
Ω

(−1

p
|∆u|p −

∫ u

0

f(|τ |)dτ)dx, h(t) = 1

2

∫
Ω

u2 + |∇u|2dx,H(t) =

∫ t

0

h(s)ds

where u is the solution of (4.1). We first start by noticing that each solution of the problem above
has the property ∫

Ω

udx = 0

9
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because the integral in the right hand side of the first equation in (4.1) is 0 and

d

dt
(

∫
Ω

udx) =

∫
Ω

utdx

=

∫
Ω

∆(|∆u|p−2∆u) + ∆utdx = 0

Hence, by the initial condition
∫
Ω
u0dx = 0, we have

∫
Ω
udx = 0. Since W 2,p(Ω) ↩→ L2(Ω) and∫

Ω
udx = 0. The optimal embedding constant B exists such that

∥ u ∥2≤ B ∥ ∆u ∥p . (4.3)

Furthermore, it is not difficult to obtain the following equality∫ t

0

∫
Ω

|us|2 + |∇us|2dxds+ E(t) = E(0) (4.4)

According to this formula, if the initial energy E(u0) is non-positive, then E(u(t)) is non-positive
for all t > 0. In the case of generalized convex functions of order α, we have

C

∫
Ω

uf(| u |)dx ≥
∫
Ω

∫ u

0

f(| t |)dtdx ≥ 1

p

∫
Ω

| ∆u |p dx. (4.5)

where C = 1
1+α

. The main results of this section are the following theorems.
Theorem 4.1. Let u be the solution of problem (4.1). Assume that f : [0,∞) 7→ [0,∞) is a locally
Lipschitz function belonging to the class GCα, with p > 1+α, and let u be a solution of the problem
(4.1) corresponding to an initial data u0 ∈ C(Ω̄), u0 not identically zero. If E(u0) ≤ 0, then there
is T > 0 such that

lim sup
t→T−

h(t) = ∞

The proof of Theorem 4.1 needs a preparation.
Lemma 4.1. Under the assumptions of Theorem 4.1, with C = 1

α+1
, the two auxiliary functions

h(t) and H(t) verify the following two conditions:

h′(t) ≥ 1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt; (4.6)

1

2C
(H ′(t)−H ′(0))2 ≤ H(t)H ′′(t). (4.7)

Proof. By differentiation and the generalized convexity (4.5), we obtain

h′(t) =

∫
Ω

uut + |∇u||∇ut|dx

=

∫
Ω

u(∆(|∆u|p−2∆u) + f(|u|))dx

=

∫
Ω

|∆u|p + uf(|u|)dx

≥
∫
Ω

(|∆u|p +
1

C

∫ u

0

f(t)dt)dx

= − 1

C

∫
Ω

(−1

p
|∆u|p −

∫ u

0

f(|τ |)dτ)dx+ (− 1

Cp
+ 1)

∫
Ω

|∆u|pdx. (4.8)

10
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Hence,

h′(t) ≥ − 1

C
E(u) + (− 1

Cp
+ 1)

∫
Ω

|∆u|pdx

≥ − 1

C
E(u)

= − 1

C
E(u0) +

1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt

≥ 1

C

∫ t

0

∫
Ω

u2
t + |∇ut|2dxdt.

Since

H ′(t)−H ′(0) =

∫ t

0

h′(s)ds =

∫ t

0

∫
Ω

uut + |∇u||∇ut|dxdt

≤ (

∫ t

0

∫
Ω

u2dxdt)1/2(

∫ t

0

∫
Ω

u2
tdxdt)

1/2 + (

∫ t

0

∫
Ω

|∇u|2dxdt)1/2(
∫ t

0

∫
Ω

|∇ut|2dxdt)1/2

≤ (H(t))1/2(2Ch′(t))1/2 = (2CH(t)H ′′(t))1/2,

by (4.8) we infer that

H ′(t)−H ′(0) =

∫ t

o

h′(s)ds ≥ 0,

and thus
1

2C
(H ′(t)−H ′(0))2 ≤ H(t)H ′′(t). 2

Proof of Theorem 4.1. Assume the contrary, that the solution u(x, t) exists for all T > 0. For
any t0 > 0, we claim that ∫ t0

0

∫
Ω

|us|2 + |∇us|2dxds > 0. (4.9)

Otherwise, there exists a t0 > 0 such that
∫ t0
0

∫
Ω
|us|2 + |∇us|2dxds = 0, and hence ut = ∇ut = 0

for a.e.(x, t) ∈ Ω × (0, t0). Then it follows from (4.8) that
∫
Ω
|∆u|pdx =

∫
Ω
−uf(|u|)dx for a.e.

t ∈ (0, t0), thus we get from (4.4) that

E(t) ≥ (−1

p
+ C)

∫
Ω

|∆u|pdx

for a.e. t ∈ (0, t0), which combines E(t) ≤ E(0) ≤ 0 and p > 1 + α imply
∫
Ω
|∆u|pdx = 0

for a.e. t ∈ (0, t0). By (4.3), we have ∥u(·, t)∥2 = 0 for a.e. t ∈ (0, t0). Furthermore, since
u ∈ C([0, t0], L

2(Ω)), we obtain ∥u(·, t)∥2 = 0 for all t ∈ [0, t0], especially ∥u0∥2 = 0, which
contradicts to the assumption ∥u0∥ > 0. Then (4.9) follows.

Fix t0 > 0, and let δ =
∫ t0
0

∫
Ω
|us|2 + |∇us|2dxds. By (4.9), we know that δ is a positive constant.

Integrating (4.6) over (t0, t), we obtain

h(t) ≥ h(t0) +
1

C

∫ t

t0

∫ s

0

∫
Ω

|uτ |2 + |∇uτ |2dxdτds

≥
∫ t

t0

∫ s

0

∫
Ω

|uτ |2 + |∇uτ |2dxdτds ≥ δ(t− t0).

11
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Hence,
lim
t→∞

H ′(t) = lim
t→∞

h(t) = +∞.

which yields, for each β ∈ (0, 1
C
), the existence of a number T0 > 0 such that for all t > T0,

βH ′(t)2 ≤ 1

C
(H ′(t)−H ′(0))2.

Now, by (4.7) we obtain
βH ′(t)2 ≤ 2H(t)H ′′(t).

We will show, by considering the function G(t) = H(t)−q, for a suitable q > 0, that the last
inequality leads to a contradiction. In fact,

G′′(t) = qH(t)−q−2((q + 1)(H ′(t))2 −H(t)H ′′(t))

≤ qH(t)−q−2(
2(q + 1)

β
− 1)H(t)H ′′(t)

for all t > T0, so that for β ∈ (0, 1/C) and q ∈ (0, 1/(2C) − 1) with 2(q + 1) < β < 1/C, the
corresponding function G(t) is concave.

By (4.7), limt→∞ H(t) = ∞, whence limt→∞ G(t) = 0. Thus G provides an example of a concave
and strictly positive function which tends to 0 at infinity, a fact which is not possible. Consequently,
u may blow up at some finite time T . Thus completes the proof. 2

Moreover, we derive sufficient conditions to ensure the solution of problem (4.1) does not extinct.
The main result is as follows.

Theorem 4.2. Let u be the solution of problem (4.1). Assume that f : [0,∞) 7→ [0,∞) is a locally
Lipschitz function belonging to the class GCα, with p > 1+α, and let u be a solution of the problem
(1.1) corresponding to an initial data u0 ∈ C(Ω̄), u0 not identically zero. If E(u0) ≤ 0, then the
solution to problem(1.1) does not extinct in finite time.

Proof. By differentiation and the generalized convexity (4.5), we obtain

h′(t) =

∫
Ω

|∆u|p +

∫
Ω

uf(u)dx

= −pE(u)− p

∫
Ω

∫ u

0

f(|τ |)dτdx+

∫
Ω

uf(|u|)dx

≥ −pE(u0) + (1− pC)

∫
Ω

uf(|u|)dx

≥ −pE(u0) + (1− pC)(

∫
Ω

u2)
1
2 (

∫
Ω

f2dx)
1
2

≥ −pE(u0) +Ah
1
2 (t)

(4.10)

where A = (1− pC)(
∫
Ω
f2dx)

1
2 .

Therefore, by Lemma 3.1 and E(u0) < 0, we have

h(t) ≥ min[h(0), (
−pE(u0)

A
)2], t > 0.

Since h(0) > 0, a > 0, E(u0) < 0, we get h(t) > 0 for all t > 0. 2

12
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5 Conclusion

Throughout this paper, we have studied the blow-up and non-extinction properties of a p-biharmonic
parabolic equation with nonlocal nonlinearities and Neumann boundary condition. Compared to
the results obtained in [1], we extended some previous results. In addition, we considered a different
equation (4.1) and under appropriate assumptions on the relations between coefficients α and p we
derive similar results on the blow-up and non-extinction behavior.
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