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Abstract

In this paper, we derived integral inequalities of Hermite-Hadamard type in the setting of
multiplicative calculus for multiplicatively convex and convex functions. We also derived integral
inequalities of Hermite-Hadamard type for product and quotient of multiplicatively convex and

convex functions in multiplicative calculus.
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1 Introduction

During the period 1967-1970, Grossman and Katz defined a new type of derivative and integral
replacing the roles of addition and subtraction with multiplication and division, and thus established
a new calculus, called multiplicative calculus or non-Newtonian calculus. However, the multiplicative
calculus is not as popular as the calculus of Newton and Leibnitz despite the fact that it addresses
all the problems that are expected from the subject of calculus. The multiplicative calculus has a
relatively restrictive application area compared to the calculus of Newton and Leibnitz. In reality,
it only covers positive functions. Therefore, one might ask whether it is reasonable to develop a new
instrument with a restrictive purpose, while a well-developed instrument with a wider scope has
already been created. The answer is similar to why mathematicians use a polar coordinate system
while there is a system of rectangular coordinates, which well describes the points of a plane ([1, 2]).

Recall that the multiplicative integral called * integral is denoted by f;f (f(z))®™ while the
ordinary integral is denoted by f;f f(x)dx.This is due to the fact that the sum of the terms of the
product in the definition of a proper Riemann integral of f on [u1,u2] is replaced with the product
of terms raised to certain powers.

It is also known that [3] if f is positive and Riemann integrable on [u1, u2], then it is *integrable

on [u1,uz] and
/u2 (f(x))d _ 6/"1112 In( f(z))dz

1

Consistent w1t [3] , the following results and notations will be needed in the sequel.
O L2 ((F@)P)™ = [32 ((f@)™)”,
(ii) f (f(2)g(@))™ = [y2(f(@))™. [} (9(x))"™,
f

eyvde 2@
(ii) ( ((;)d :Wa

(iv) f 2(f@)™ = £ (F@)™. [ (f@)™, w<ec< u.
() [ (@)™ =1 and [ (f(@)* = ([ (F@)*)

The concept of convexity and its variant forms have played a fundamental role in the development
of various fields. Hermite (1883) and Hadamard (1896) independently shown that the convex
functions are related to an integral inequality known as Hermite-Hadamard inequality.

Let f: I C R — R be a convex function defined on interval I and ui,us € I. Then following

inequality holds
U1 + U2 1 2 flur) + f(u2)
(%5 )Suful/ul fw)de < T T I (1)

which is known as Hermite-Hadamrd integral inequality for the convex functions. By an
appropriate selection of the mapping f, some classical inequalities for the mean can be derived
from (1). Both inequalities in (1) holds in reverse direction if f is concave. For several recent
results concerning these types of inequalities, we refer to [4, 5, 6, 7, 8, 9, 10] and references stated
therein.

The main purpose of this article is to establish integral inequalities of the Hermite Hadamard
type for convex functions and multiplicatively convex functions and their products and quotient in
the setting of the multiplicative calculus.
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2 Preliminaries
Definition 1. A non-empty set K is said to be convex, if for every ui,us € K we have
ur + p(uz —u1) € K, V puelo,1].
Definition 2. A function f is said to be convex function on set K, if
flur + puz —wr)) < fun) + p(f(u2) — fur)), ¥V p€[0,1].

Definition 3. A function f is said to be log or multiplicatively convex function on set K, if

Flur + pluz = 1)) < (f(ua))' ™ (f(u2))", ¥V p e [0,1].
Definition 4. A function f is said to be quasi convez function on set K, if

flur + p(uz —wr)) <max(f(u1), f(u2)), ¥ pu€0,1].

From the above definitions we have a relation

()™ (fu2))”
flua) + p(f(u2) = f(ur))
max(f(u1), f(u2)).

flur + pluz —u1))

ININ A

3 Hermite-Hadamard Integral Inequalities

In this section, we derive integral inequalities of the Hermite Hadamard type for positive functions
in the framework of multiplicative calculus.

Theorem 5. Let f be a positive and multiplicatively convex function on interval [ui,us2], then
following inequalities hold

()< (7 <f<x>>“)”l” < G(f (), f(u2)), )

uq

where G(.,.) is a geometric mean. The above is called Hermite Hadamard Integral Inequalities
for multiplicatively convex function.

Proof. Let f be a positive and multiplicatively convex function. Note that

g (M) = (p (U b (e )
_ 1n(f<(1_ﬂ)1261+,uu2+uu1+(;—u)uz>>

IA

(e s (o)
C () e ()
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Integrating the above inequality with respect to p on [0, 1], we have

(52 = L) (s ()

_ 1[ 1 Aj21n(f(x))dx+ /u:lln(f(x))dm}

IA

U2 — UL

[ 1 /uwln(f(x))dx—i— ! /uwln(f(x))dx}

Uz = UL Sy, Uz = UL Sy,

Uy — U2

2
1
2

- ! /;2 In (f(2)) do

U2 — UL N

Thus

F (u1 + u2) ooty Ji2 n(f (@) de)

2
= ([T e =

Hence

)

IN
VRS
:\
-8
—~
~
—~
8
N>
=

[
)
SN~—r
g
[
|
3
=
—~
w
=

Consider the second inequality

([ @)™ = (i)

e (J7 (s )
o (Jg In(f (u1+p(uz—u1)))dp)
o ((F(u1)) T (f (u2))™ ) dp)

IN

e(
(

Jo(=p) In f(ur)+pn f(uz)dp)

(&

6(ln(f(u1)<f<u2>>%)

f(u1).f(u2)
= G(f(w), f(u2)),

hence
( [ <f<af:>>f“”)W < G(f (), f(u2)). (1)

Combining (3) and (4), we have

() < ([ ) T < G Fu),

1

Example 6. Note that f(z) = e is a multiplicatively convex function. Suppose that u1 = 1 and
us = 3. Then

f(U1;u2) = () Zsa5082
([ verm) - (/ (eﬁ)dz)% .

G(f(u1), f(u2)) 148.4132.
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which is true.

Theorem 7. Let f and g be positive and multiplicatively convex functions on [u1,uz], then following
inequalities hold

() g () < ( / S / N (g(w))d”)”i’” < G(f (), f(u2).Glg(wn), g(us)).
(5)

Proof. Let f and g be positive and multiplicatively convex functions. Note that

(s (U)o (M5) = w(r(25) +mle ()

= 1n<f((1 )1 ‘H“Q;uul—&- (1—p ))
—Hn(g((l ) +Mu2;—,uul+ 1—M)u2))

= 1n<f((1—,u)1;1 +uu2+,uu1 ))
+ln(g<(1*“)gl+#u2+uu1+ (1—p ))

IN

I (7 (1= pyun + pu2))® - (F Guun + (1= pe)ua)) ®

+1n ((9((1 = pur + pu2))? - (g (pur + (1= p)uz))

N~—

Nf=

)

= S =+ ) + g I (F (s + (1 )
+% In (g (1 = pur + puz)) + %ln (9 (pur + (1 = phuz)).

Integrating above inequality with respect to p on [0, 1], we have

(s (M) 0 (%))

|5 m (=  + pes)) + (7 s+ 1= )]
# [ [5G G+ (1= )| de

1 “2 1 “1
= 72(1@ *Ul)/u ln(f(ac))dm—i—i%m *U2)/u In (f(z))dx

1 2

1 w2 1 uy
ey / In (9(a) da + 5 / In (g(2)) dz

1 2

1 uz 1 uz
= In(f(x))dz + / In(g(x))dx
i L e e [ o)
pEEy g () o (e i e st )

( S22 n(f (2))dat [12 1n<g<z>>dz) T
(e
2\ Y2 Ul
(L7 e [ aa=) ™
u1

2 m(f@)de fu2 ln(g(z))dz) Py
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Hence

() e () < ([T [T ) = (©)

1

Consider the second inequality:

1 1
: 1 g g 1
</u2 e [ (g(m»dm) uz—ul  _ (eml In(f (@))da+ [ 1n(g<x>>dm> up—u1
ul ul
1
(ewz—un{f& In(f(ur+n(ug—u))du+ [yl 1n<g<u1+u<u2—u1>>)du}) up—ug

3 (P (ur p(ug —ur))dut [ In(g(ur +a(ug—u1))du

3 m (TR )™ ) dut 3 n((a(ua )P TH (g (ug)H ) du
W= Fu)+us (ug))dut 3 In((1—p)g(ur)+pg(ug))du
_ () Fu2) ? Hnle(ur).a(uz))

= V(D) fu2)/(9(u1).g(u2))
= G(f(u1), f(u2)) .Glg(u1), 9(un)).

Hence

( [ ue [ (g(a:))“) L G (), flus)) Clglur), glu2). )
Combining (6) and (7), we have

() e () < ([ e [ ) T < G ), £ (0) o), o).

This is called Hermite Hadamard type integral inequality for the product of multiplicatively
convex functions. m

Example 8. Note that f(z) = e and g(z) = e!®! are multiplicatively convex functions. Let uy = 1
and us = 3. Then

2 2

</ et [ (a(a)™ ) - (/ ()" / (”)dm>é -

G(f(u1), f(u2)).Glg(ur),g(u2)) = Vel.e3* Vel.e3 =1096.6335.

sz pas
f(a+b)g(a+b) = (57) e = 403.4288,

which is true.

Theorem 9. Let f and g be positive and multiplicatively conver functions on [ui,u2]. Then the
following inequalities

(®)

hold.
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Proof. Note that

ln<

f(g2)
g (™52)

)

= (s () —m(e ()

_ (f( u1+uu2+uu1+1— )

(g((lfu)er,uunguulJr (1—p )))

—1In

_ ln(f((1_u)z;1+m+w1+ 1-u )))

n (g<(1—M)U1+MU2 uu1+ (1—p

2

)

1n(<f<<1—u>u1+uu2>>%.<f<uu1+<1—) )?
—1n (g ((1 = pyur + pu2))® (g (s + (1= p)uz))?)

In (f (1= s+ pua)) + 5 10 (F (s + (1= p)uz))

IN

N~—r

[NE

N =

5 (g (1= s + pruz)) = 5 1n (g (pn + (1= p)ua)

Integrating the above inequality with respect to p on [0, 1], we have

9

Hence

. <f (fe2)

(152)

@ =

(u1+u2

N

uitug

»

)

~—

~—

IN

5 (= s+ )+ (7 s+ 0= )]

~ [ [5G G+ (1= )| e
1 ug
)/m In (f () e+ 5

2(u2 — ur 2(u1 — uz

1 w2 1
/ Cin(o(@)ds +

i/ In (f()) da

2w J, T
—/ In (f(2)) dz — / In (g(x)) de

U2 — UL
22 n(f(2))do— Lo (2 In(g(x))da)

/ In (g(x)) de

U2 — U1

et

(61“2 In(f(2))de— 2 In(g >>@)ﬁ

6fu12 In(f(z))dz \ ug 1u1
e In(g(@)de
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Now consider,

(:fuw»“>w“ﬂ
[ (gan™

iz (i @)\ T
i n(g(@)de

(ef;‘f In(f(2))dz— 12 ln(g(z»dz) CoEy

oJo (F (urtu(uz—un)))dp—fg n(g(urtu(uz—u1)))dp
eJo ()t ~#(f(u2)#) = [ (g (ua)t~# (g(u2))*)

efol((lfu) In(f(u1))+pln f(uz))du— g (1—p) In(g(u1))+pln g(uz))du

IA I

(S (1) F(u2) % ~In(g(u1)-g(u2)) 2

(f(u1).f(u2))
(9(u1).g(uz))
G ((f(u1), f(u2)))
G (g(u1),g(u2))

Hence

wy (f(x)* B G ((f(ur), f(uz)))
<f<g<>>> = "G (glwn), gu2)) (10)

Combining (9) and (10), we have
o (f(w))‘“) e G(f(w1), f(uz))
< | fm < A, JAR2))
g(=52) ~ (f:f (g(x)*™ B

This is called Hermite Hadamard Integral inequality for quotient of multiplicatively convex
functions. m

Example 10. Note that f(z) = e and g(z)=e | are multiplicatively convez functions. Suppose

that u1 = 1 and ua = 3. Then

which is true.

Theorem 11. Let f and g be conver and multiplicatively convexr positive functions, respectively.
Then we have

1
1 f(ug) -
ug dz \ us—u (f(u2)) 2 )f(“2) fuy)
(fu1 (f(@)) ) o < ((f(ul))f(ul) , (11)

Ji2 (gla))™ G(g(ur), gluz)).c

where G(.,.) is a geometric mean.
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Proof. Note that

P u 1
[ (g(a))™ T\ iR mga)dz
- (ef;f In(f(2))dz— [ 2 1n<g<z>>dz) [rET
ef[)l ln(f(u1+u(u27u1)))duffol In(g(u1+p(uz—u1)))du

< efol In(f (ur)+u(f (uz) = f(u1)))du— [ In((g(u1) "~ H (g(uz))*)dp

(f(u1))f (1)

G(g(u1),g(u2)).e

Hence

1
1 F(u2) \ Flus)=F(ui)
ug de\ To—u M) Tlug)—7F(u1)
Juf ()™ e (fedres .

2 (g(a)™ Glg(ur), gluz))e
This completes the proof. m

Theorem 12. Let f and g be multiplicatively convexr and convexr positive functions, respectively.
Then

< :12 (f(z))dz> vz < G(f(ur), f(uz)).e
i (g™ - (@m»gw)m’

(g(u1))?1)
where G(.,.) is geometric mean.

Proof. Note that

2 (g(x)) ™

2 (@) \ Ty
1
— (ef;ff In(f («))dw— [*2 1n<g<z>>dm) gy

= oJo m(f(urtpua—u1))du—f¢ In(g(ur+p(uz—u1)))du

o3 I((F () 7 (F (w2)) ") [ In(g(u)+h(g(uz) —g(u1)))dp
1
In(G(f(u1),f(uz)))~In ((M) 9luz)=9(u1) ) $1

(g(uq))9@1)
G(f(u1), f(u2)).e

(g(u1))9e1)

IN

= e

Hence

1
u dr \ us—wuq
Ji G@N™N =70 G ), f(u2)) e
27 (g(@))*™ B (M)m
(g(u1))9(1
This completes the proof. m

Theorem 13. Let f and g be convex and multiplicatively conver positive functions, respectively.
Then

— )
&

1
1 (f(ug))f w2)\ Flug)—F(u1)
(/ S / ; (g(m»d’”) = (Gepmen) Glytu), gluz))

1 1
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where G(.,.) is geometric mean.

Proof. Note that

—1__ u U 1
2 ayde /uuz (g(m»dm) ug-ul o _ (Juf In(f (@) da+ [y ] 1n(g<x>>dm> ug—ul
sul

(i

uw 1
(cmrul){f(} In(f (ug+p(uz —uy)dpt fuf 1n<g<u1+u<u2—ul>>)du}) uz—u1

O M urtp(ug —u))dpt [ In(g(ur+i(ug —ui)))dp

G (S () (f(ug) = f(u1)))dpt [g In((g(ur) TH (g (ug))H)dp

<
I T
ln((%) f(“2)7f(u1))—1+ln(G(g(U1)19(U2))>
— ul
I T
(m%) fluar= ) ‘G(g(u1), g(uz))
|
Hence
1
Fu2) \ Flug)—f(ur)
([ ey [ )™ < () ™ Glotm).g(u)
T . g(x < :
uq uyl c
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