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Abstract: Planetary rovers play a critical role in space exploration missions, where one of the
most fundamental algorithms is pose determination. Due to environmental and computational
constraints, real-time pose determinations of planetary rovers can only use low-cost techniques, such
as visual odometry. In this paper, by employing the angle-based criterion, a novel pose determination
algorithm is proposed for visual odometry, which is suitable for any type of central camera. First,
the problem is formulated using the Huber kernel function with respect to the angular residuals.
Then, an intermediate coordinate system is introduced between the initial estimation and final
refinement. In order to avoid being trapped in periodic local minimums, a linear method is used to
further align the reference points between the intermediate and camera coordinate systems. Finally,
one step refinement is implemented to optimize pose determinations. The theoretical analysis, the
synthetic simulations, and the real experiments show that our proposed algorithm can achieve the
best accuracies within similar processing times, compared with the most state-of-the-art algorithms,
thereby approving the effectiveness of the proposed algorithm used in planetary rover onboard
visual odometry.

Keywords: planetary rover; visual odometry; pose determination; angle-based criterion

1. Introduction

Since Lunokhod 1, the first lunar rover, landed on the Moon in 1970, many plane-
tary rovers have been or are being developed to explore the geology of extraterrestrial
planets, opening an effective access towards the unknown universe for mankind. During
exploration missions, accurate and real-time pose determination is the prerequisite of
various tasks, especially in rover operation and 3D map reconstruction [1]. However, due
to environmental and computational constraints, accurate pose determination is always
challenging for planetary rovers. No prior information can serve as absolute position refer-
ence in unknown environments, such as landmark and global navigation satellite system.
Moreover, no loop closure can be employed to compensate the drift accumulated over time,
limited by the onboard computing and storage capability. Therefore, planetary rovers can
only rely on the pose determination derived solely from either an inertial measurement unit
(IMU), wheel odometry (WO), or visual odometry (VO) [2]. Among the above techniques,
the performance of VO has shown many advantages in both accuracy and robustness, while
IMUs suffer most in height divergence, and WOs encounter traction loss on high-slippage
terrains. Therefore, VO has become predominant in recent planetary rovers, such as the
CNSA Yutu-2 rover [3], NASA Perseverance rover [4], and ESA Rosalind Franklin rover [5].

In robotics, VO is a technique for determining the position and attitude of a robotic
vehicle based on 3D-2D feature correspondences extracted from sequential images. As
the most common visual textures on the planet surface, point features are widely used for
onboard VO in planetary rovers [6]. Without noise, all the 3D points in a determined pose
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should align with their corresponding 2D projections. However, due to various sources of
noises, the 3D points and their 2D projections can never be fully aligned. Therefore, we
should find the optimal pose to align them, using some specific criterion.

As the most significant module in VO, pose determinations based on matched 3D-2D
points have been studied in numerous literatures in the past decades. In our opinion, all
the algorithms can be categorized into four main criteria, which are the algebraic three-
point constraints (ATPC)-based criterion, point-to-point distance (PPD)-based criterion,
point-to-line distance (PLD)-based criterion, and the angle-based criterion.

The first one is the ATPC based criterion, which can be expressed as unary quartic
polynomials derived from the minimal problems with three points [7]. By utilizing this
criterion, a pose determination problem is reorganized as multiple minimal problems with
two common points, then the Euclidean norm of the ATPC is minimized by solving a
seventh order equation [8]. Apparently, these two common points are emphasized far more
than the other points, thus the accuracy of pose determination is greatly degraded when
these two points are corrupted severely by noises. Therefore, the ATPC based criterion is
usually employed during initialization, then the pose is optimized by iterative methods [9].

In order to improve the accuracy in pose determinations, the PPD-based criterion is
developed, which is widely used in current VO systems. Using this criterion, the deviations
between reference points and their back-projected image points are minimized. One direct
method is anisotropic orthogonal Procrustes analysis, where attitude, position, and scale are
optimized successively [10]. This algorithm is robust as it can converge from any reasonable
initial scale, but it is time-consuming due to its univariate search strategy. The first non-
iterative algorithm with linear complexity was proposed in [11], where four virtual control
points were introduced to represent all the reference points in a frame. Due to the benefit
from the reduced number of control points and the linearized expressions for reference
points, the computational efficiency is significantly improved. After obtaining a linear
solution, the weights of the four control points are refined using the PPD-based criterion.
Subsequently, outlier rejection [12] and covariance leverage [13] are embedded in this
control-point system to improve the performance of pose determinations. Unfortunately,
these algorithms may result in unstable estimations in less redundant cases, because of
ignoring the orthogonality of rotation matrix in calculations.

To overcome the above issue, the PLD-based criterion has been explored. Based
on the PLD criterion, the orthogonal deviations between the reference points and the
observed projection lines are minimized. In [14], the optimization problem is decoupled
and reformulated in an unconstrained form, where the rotation is parameterized as non-
unit quaternions. The answers to its multivariate polynomial equation system are solved in
a closed form using the Grobner basis (GB) technique and all stationary points are found
accordingly. Note that, the sign ambiguity inherent in quaternions should be handled
carefully. Therefore, in more recent works [9,15], the Cayley–Gibbs–Rodriguez (CGR)
parameterization is adopted instead and a more compact derivation is proposed. Similarly,
the GB method is employed to solve the cubic polynomial equation system. In order to
avoid singularity, an accurate initial pose should be acquired [9], or a fixed pre-rotation
should be applied [15].

Although fairly accurate pose determination is achieved, the distance-based criteria
are neither justified nor likely in real applications [16]. It is more reasonable to use the
angle-based criterion, where the noise model is applied to original measurements instead
of back-projected distances. Since this criterion is rotationally invariant, it can be utilized
for any type of central camera, such as perspective [17,18], fisheye, and omnidirectional
cameras [19]. In [20], a direct least square (DLS) algorithm was proposed to minimize the
angular residual between the measured and the reprojected directions. By relaxing the
scale constrains, the degree of the objective function is reduced and all stationary points
can be found by eigenvalue decomposition. Subsequent research showed that sometimes
only sub-optimal solutions could be determined using DLS, resulting in less accurate
poses [9,15]. In [21], another iterative algorithm was proposed to solve the minimization
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problem. The optimization is only roughly initialized by direct linear transformation (DLT)
and then refined by Gauss–Newton (GN) iteration. However, this algorithm can easily be
trapped in local minimums during pose determinations, because of the coarse initialization.

In this work, we adopt the angle-based criterion and propose a novel structure of
pose determination. First, the Euclidean norm of the angular residual is constructed as
cost function, where the Huber kernel is introduced to ensure robustness. Then, the initial
pose is obtained based on the DLT solution of the PLD-based criterion. Instead of directly
aligning the world coordinate system (WCS) with the camera coordinate system (CCS),
an intermediate coordinate system (ICS) is introduced here to represent all the reference
points transferred from the WCS. After that, an additional alignment is added to align
the ICS to the CCS using small rotation assumptions. Finally, iterative refinements are
implemented to achieve the angular minimum. During the alignment, the rotation matrix
is approximately parameterized in a linear form. In this way, the chance that the algorithm
is trapped in periodic local minimums, because of trigonometric terms, is significantly
reduced. Therefore, the pose can be converged in a relatively large step towards the global
angular minimum. The overall accuracy can be improved accordingly. Moreover, only one
step of refinement is enough to reach the angular minimum, thus the number of iterations
is greatly reduced. As a result, although an additional alignment is added in our algorithm,
the total processing time is not really increased.

In this paper, we first explain the proposed algorithm. In Section 3, the performances
are verified using both synthetic and real data. Finally, the conclusion is summarized in
Section 4.

2. Methods

As shown in Figure 1, a calibrated camera is served as a monocular VO on a planetary
rover. Without losing generality, the lander coordinate system is chosen as the WCS,
while the rover coordinate system is assumed to coincide with the CCS. In the current
frame, a set of 3D reference points, {pi}, are observed as 2D image points, {ui}. Due to
various sources of noises, the reprojected and measured projection directions, bc

i and dc
i ,

respectively, can never fully coincide. R ∈ SO(3) is denoted to be the rotation matrix and
t ∈ R3 to be the translation vector of the planetary rover. The aim of our algorithm is to
retrieve the optimal R and t which result in the minimum angular residual δθi, based on
the angle-based criterion.
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The proposed algorithm is developed with the following steps:
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1. Problem formulation—constructing the optimization with respect to δθi, enhanced by
the Huber robust kernel;

2. Initial estimation—roughly solving the PLD criterion by DLT to create a virtual ICS,
which is close to the CCS;

3. Alignment—aligning the ICS with the CCS under the small rotation assumption for
the algorithm not to be trapped in periodic local minimums of δθi;

4. Refinement—finally obtaining the rover pose with the global minimum of δθi.

2.1. Problem Formulation

First, the Huber kernel function is introduced to guarantee the convergence under
gross measurements. Assuming δθi follows the Gaussian distribution [22], the Euclidean
norm of δθi should be minimized. The overall algorithm is developed, as shown in
Equation (1).

(R, t) = argmin ∑
i

{
2ε|δθi| − ε2 |δθi| > ε

δθ2
i |δθi| ≤ ε

(1)

where ε is the error threshold determined by measurement covariance. As shown in
Figure 2, assuming δθi are small enough, they can be approximately expressed by the
deviations between bc

i and dc
i ,

δθi ≈ ‖bc
i − dc

i ‖2 (2)
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Let pw
i and pc

i be the coordinates of pi in the WCS and CCS, which are indicated by
superscribes w and c, respectively. The transformation from the WCS to the CCS can be
defined as,

pc
i = Rpw

i + t, (3)

and bc
i can be normalized by

bc
i = pc

i /‖pc
i ‖2, (4)

where ‖·‖2 denotes the Euclidean norm. Substituting Equations (2)–(4) into Equation (1),
the optimization within the neighborhood of the angular minimum is obtained as

(R, t) = argmin

[
−∑

i

1
λi

dc
i ·(Rpw

i + t)

]
(5)

where λi = ‖Rpw
i + t‖2 is the distance of the i-th point from the camera. The rover pose

can be determined by pw
i and dc

i , where pw
i are triangulated from previous views and dc

i are
recovered from ui with calibrated intrinsics.
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In the state-of-the-art literature [21], δθi is approximated by its sine value, while in our
algorithm, Equation (2) is used. As illustrated in Figure 2, obviously, we adopt a closer
approximation to calculate δθi. As a result, our algorithm is more accurate. Moreover, our
cost function is constructed with a lower order compared with the one in [21], which can
be linearized more effectively in computations.

2.2. Initial Estimation

The PLD-based criterion is employed to obtain a linear estimation of rover pose.
Without noise, all reference points should be located along their corresponding projection
rays, which are originated from the optical center of the camera. The initial estimation of R
and t can be derived using Equation (6).

[dc
i ]×(Rpw

i + t) = 0 (6)

where [·]× is the corresponding skew-symmetric matrix of a vector.
The QR factorization of

[
dc

i
]
× is

[
dc

i
]
× = QDiRDi, where QDi is orthogonal and RDi is

upper triangular. The third element on the main diagonal of RDi is always zero. Therefore,
the rank of

[
dc

i
]
× is 2 and the rows of

[
dc

i
]
× are linear dependent.

[
dc

i
]
× can be simplified

as
[
dc

i
]−
×, which can be obtained in Equation (7).

[dc
i ]
−
× =

[
1 0 0
0 1 0

]
·QDi (7)

Although
[
dc

i
]−
× has less dimensions than

[
dc

i
]
×, it consists of the entire row basis of[

dc
i
]
×. Hence,

[
dc

i
]−
× and

[
dc

i
]
× are equivalent in singular value decompositions (SVD),

which lead to the same result in calculations. Because of the fewer dimensions used, the
overall computing time is reduced, when using

[
dc

i
]−
×.

Base on Equation (6), t can be expressed by R as,

t = R−1
A QT

Ab (8)

where A = −
[[

dc
1
]−
× [dc

2]
−
× · · · [d

c
n]
−
×

]T
, b =

[[
dc

1
]−
×Rpw

1 [dc
2]
−
×Rpw

2 · · · [dc
n]
−
×Rpw

n

]T
, and

QA and RA are the QR factorization of matrix A. The QR factorization introduced here
is equivalent to the Moore–Penrose inverse when solving non-homogeneous linear equa-
tions. However, it is more robust for ill-conditioned equations and more efficient in
calculations [23].

By substituting Equation (8) back into Equation (6), a homogeneous linear equation is
obtained as,

Fx = 0, (9)

where x =
[
r11 r12 · · · r33

]T, which is composed of the nine elements in R, and F is
the coefficient matrix computed from pw

i and dc
i .

By relaxing the unit orthogonal constraints inherent in R and regarding x as indepen-
dent variables, Equation (9) can be solved by SVD using at least 5 points,

F = USVT (10)

and x is estimated to be x̂ as,
x̂ =

[
01×8 1

]
V (11)

The estimated rotation matrix R̂ can be recovered from x̂. The exploited constraints
show that R̂ is not a correct rotation matrix. Therefore, R̂ should be projected to the SO(3)
space. R̂ can be expressed by SVD as R̂ = U1S1VT

1 . The initial estimation of the rotation
matrix, Rini, can be found as,

Rini = U1VT
1 (12)



Aerospace 2022, 9, 391 6 of 17

After obtaining the rotation matrix Rini, the initial estimation of the translation vector,
tini, can be computed by Equation (8).

Benefiting from the linear formulation, the reduced dimensions, and the QR factor-
ization, the overall processing time is reduced. Unfortunately, because of the biased PLD
criterion and the relaxation applied, the pose roughly estimated in this section cannot guar-
antee that the algorithm converges to the global angular minimum with the CCS directly,
especially under large noise conditions. To solve this problem, the ICS is introduced and is
further aligned with the CCS before the last step of iterative refinements.

2.3. Alignment

The ICS is then defined as the coordinate system generated by Rini and tini and pm
i is

denoted as the coordinate of the i-th reference point in the ICS. In this way, the ICS is only
roughly initialized. Next, we further align the ICS with the CCS. The transformation in
Equation (3) can be reorganized into homogeneous coordinates as,[

pc
i

1

]
=

[
Rali tali

0 1

][
pm

i
1

]
=

[
Rali tali

0 1

][
Rini tini

0 1

][
pw

i
1

]
(13)

where Rali and tali are the rotation matrix and the translation vector used for
alignment, respectively.

Assuming that only a small transformation is required to align the ICS with the CCS,
Rali can be approximately parameterized under small rotation conditions, i.e.,

Rali = I + [sali]× (14)

where sali ∈ so(3) is the Lie algebra. As you can see, there is no quadratic or trigonometric
term in Equation (14), compared with the one using the Rodrigues formula in [21]. As
a result, the algorithm used to calculate the pose can be converged quickly towards the
global minimum, without being trapped in periodic local minimums. In addition, the linear
expression here further reduces the computational time in this step.

Substituting Equation (14) into Equation (2), we have[
1
λ̂i

[
pm

i
]
× − 1

λ̂i
I
][

sali
tali

]
=

1
λ̂i

pm
i − dc

i (15)

where λ̂i = ‖Rini pw
i + tini‖2 is the initial estimated distance of the i-th point from the

camera. By utilizing the QR factorization, sali can be easily solved. Subsequently, Rali can
be calculated from the Rodrigues formula in Equation (16), and tali can be retrieved from
Equation (8).

Rali = I + sin ϕ[s1]× + (1− cos ϕ)[s1]
2
× (16)

where ϕ = ‖sali‖2 and s1 = sali/‖sali‖2.

2.4. Refinement

In this section, GN optimization is applied to refine the rover pose from the ICS to
CCS, which is parameterized as the Lie algebra lk ∈ se(3). The corresponding pose of lk
can be calculated as, [

Rk tk
0 1

]
= exp

(
[lk]×

)
(17)

where exp(·) is the exponential function. The subscript k is introduced here to represent the
k-th step during the refinements.

Next, the refinement ∆lk is found to achieve the minimum δθi using the following
normal equation,

Hk∆lk = gk, (18)
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where Hk = ∑
i

JT
i,k Ji,k is the Hessian matrix and gk = ∑

i
JT
i,kbi,k. The Jacobian matrix Ji,k is

computed by

Ji,k =
∂lδθi
∂l∆lk

=

[
1

λi,k

[
pm

i,k

]
×

1
λi,k

(I − 1
λ2

i,k
pm

i,k pmT
i,k )

]
. (19)

Compared with the Euler and CGR parameters, the Jacobian matrix given in Equation (19)
is simpler in form [24]. The angular residual bi,k is calculated by

bi,k =
1

λi,k
pm

i,k − dc
i . (20)

With ∆lk obtained, the pose can be updated by[
Rk+1 tk+1

0 1

]
= exp

(
[∆lk]×

)[Rk tk
0 1

]
. (21)

It can be seen that Equation (19) has one more tensor term than Equation (15), pm
i,k pmT

i,k ,
which is generated by the derivative of 1/λi. Because of this additional term, the rover
pose can be accurately refined to the angular minimum of δθi. The pseudo-code of the
proposed pose determination algorithm is summarized in Appendix A.

3. Implementations and Results

In this section, the proposed algorithm is implemented in synthetic and real environ-
ments. The rotation and translation errors are compared with those from the state-of-the-art
pose estimators in each criterion [8,9,11,21], which are

1. The fast, general, and optimal algorithm (FGO) using the ATPC criterion [8];
2. The efficient Gauss–Newton algorithm (EGN) using the PPD criterion [11];
3. The simple, robust, and fast algorithm (SRF) using the PLD criterion [9];
4. The maximum likelihood algorithm (ML) using the angle-based criterion [21].

The source codes of all the above four algorithms can be found from the references,
respectively. All the simulations are done in MATLAB using a laptop with Intel(R) Core
(TM) i5-3230M, 2.60 GHz CPU and 4.0 GB RAM.

Denote the ground-truth and the estimated pose as (R0, t0) and (Re, te), respectively.
The rotation error is defined as,

eR = arccos

(
tr
(

ReRT
0
)
− 1

2

)
× 180

π
, (22)

where tr(·) is the trace of a matrix. The translation error is expressed as,

et =
‖te − t0‖2

‖t0‖2
× 100%. (23)

3.1. Synthetic Simulations

A virtual perspective camera is synthesized, whose focal length is set to be 500 pixels.
N 3D reference points are generated in the CCS. These points are transformed into the WCS
using the ground-truth poses, which are randomly sampled in the SE(3) space. Meanwhile,
the 3D reference points are projected onto the image plane of the calibrated virtual camera
and the Gaussian noises are added to these 2D image points.

3.1.1. Simulations in Known Environments

In this section, the planetary rover is set to move around the lander, which is considered
as a known environment. In this situation, all the reference points have been well-calibrated
without uncertainties. The measurement noises are the only source of noises.
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Since the accuracy of the pose determination is closely related to the configuration of
the reference points, different configurations should be synthesized to evaluate the perfor-
mance of our proposed algorithm. Let P =

[
pw

1 pw
2 · · · pw

N
]T, then the distribution

of the reference points can be described by the column rank γ and the condition number κ
of P. Following the similar examples in [8,9,15,21], three configurations with different γ
and κ values are used in the simulations:

1. Planar configuration, with γ = 2 and κ → ∞ . For example, the reference points are
randomly distributed in the range of [−2, 2]× [−2, 2]× [0, 0];

2. Ordinary configuration, with γ = 3 and κ ≤ 5. For example, the reference points are
randomly distributed in the range of [−2, 2]× [−2, 2]× [2, 6];

3. Quasi-singular configuration, with γ = 3 and κ > 5. For example, the reference points
are randomly distributed in the range of [−2, 2]× [−2, 2]× [2, 18].

First, the rotation and translation errors are investigated with respect to the number of
reference points. N is varied from 10 to 200. The standard deviation of the Gaussian image
noise is fixed at σ = 4 pixels, in order to show the clear performance differences between
our algorithm and the ones in the references. For each number of points, the simulation is
repeated 500 times. The mean rotation and translation errors are reported in Figure 3.

It is well understood that the accuracy of pose determination increases with the
number of points and decreases when the configuration of points becomes more singular,
as illustrated in Figure 3. Our algorithm gives the best accuracies for all configurations.
Especially, the greater advantages are shown from the planar to the ordinary and the
quasi-singular configurations, where the distribution of the reference points becomes more
discrete. In addition, as shown in Figure 4, the proposed algorithm is competitive in
computational efficiency. Although an additional alignment step is added in our algorithm,
we simplify the algorithm in each step. As a result, the overall processing time is not
increased compared with the other algorithms. Moreover, from our simulations, it can be
observed that the proposed algorithm uses the least time, when N < 80.
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Second, the robustness is evaluated under different levels of noises. σ is varied from
0.5 to 5 pixels, while N is fixed at 50, which is the typical number in key-points selection [25].
For each level of noises, the simulation is repeated 500 times, and the mean rotation and
translation errors are recorded in Figure 5.

As demonstrated in Figure 5, the accuracy of pose determination degrades with the
increment of image noises. Among the evaluated algorithms, our algorithm is the least
sensitive to Gaussian image noises, and it maintains the highest level of accuracies in all
the synthesized configurations. Similarly, our algorithm shows the greatest improvements
of accuracies in the quasi-singular case.
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The above results confirm that our algorithm is the most accurate and robust for
pose determinations, for all the configurations. The greatest improvements appear in the
quasi-singular configuration, where the reference points are the most discrete. This is
because, among all the algorithms, only the angle-based criterion considers measurement
uncertainties related to the distances. Although ML also adopts the same angular criterion,
it achieves less accurate pose determinations, compared with our algorithm. The reason is
that ML is often trapped in local minimums because of its coarse initial pose estimation
determined by the relaxed PLD criterion.

3.1.2. Simulations in Unknown Environments

In this section, the planetary rover is set to move in unknown environments, where the
reference points are triangulated from previous views. This case represents the movement
away from the lander. In this situation, both the uncertainties of the reference points and
the measurement noises need to be considered.

Reconstructed by triangulations, the uncertainties of the 3D reference points increase
with their squared distances from the camera but decrease with the number of the tracked
views [26]. To show the effect of distances clearly, the reference points are triangulated by
only two views around the current pose. The following scenarios are designed to validate
the performance of our algorithm.

1. The reference points are randomly distributed in the range of [−2, 2]× [−2, 2]× [1, 2r],
where r is the distance ratio. r is varied from 1 to 12;

2. The reference points are randomly distributed in the range of [−2 + o, 2 + o] ×
[−2 + o, 2 + o]× [2, 6], where o is the distance off center. o is varied from 0 to 10;

3. The reference points are randomly distributed in the range of [−q, q]× [−q, q]× [2, 6],
where q is the tangent of the field of view (FOV). q is varied from 2 to 12.

As can be seen here, the larger the value of r, o, and q, the more discrete the distribution
of reference points.

During the simulations, N is fixed at 50, and σ is fixed at 2 pixels. All the simula-
tions are repeated 500 times for each value of the parameters, and the mean rotation and
translation errors are presented in Figure 6.
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As illustrated in Figure 6, our algorithm shows the best accuracies in all the scenarios.
Our accuracies remain almost unchanged, while the performances of FGO, EGN, SRF, and
ML algorithms degrade, when the r, o, or q increases. It is observed in Figure 6a,b that,
when r increases from 1 to 12, the rotation and translation errors using our algorithm are
only changed from 0.26 to 0.29 degrees and from 0.18% to 0.29%, respectively. We can see
the relatively rapid increments of the errors using the other algorithms. From Figure 6c,d
it is found that the translation errors are less affected by the change of distance off center.
When o increases from 0 to 10, the rotation error from our algorithm is kept around 0.22
degrees and this error grows greatly in the other algorithms. The rotation errors using the
other algorithms are all above 0.54 degrees when o is 10. When the FOV increases, the
rotation errors are likely not affected, as displayed in Figure 6e. Figure 6f shows that, the
translation error from our algorithm remains below 0.31% while the errors are increased
more than 0.55% using the other algorithms, when q reaches 12.

Overall, to our best knowledge, the proposed algorithm can achieve the most accurate
pose determinations in all conditions of both known and unknown environments. Our
algorithm is least influenced by the changes of distance ratio, distance off center, and FOV.
The advantages of our algorithm are more obvious when used in an environment with
larger distances and a wider FOV. Therefore, it suits the real implementation environments
of planetary rovers the best.

3.2. Real Experiments
3.2.1. Experiments in Known Environments

In this section, our algorithm is tested using the 3D box dataset [14]. First, the feature
points in both the reference and current images are detected and extracted as scale-invariant
feature transform (SIFT) points [27]. Then, these feature points are matched according
to their Hamming distances, where the random sample consensus (RANSAC) method is
employed for outlier removal [28]. The camera pose is calculated by these matched 3D-2D
correspondences, using the above five algorithms, respectively. Finally, the 3D feature
points are reprojected onto the 2D image plane using the determined poses and the average
reprojection errors are calculated. The visual result using our algorithm is depicted in
Figure 7, and the average reprojection errors are reported in Table 1.
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Table 1. The reprojection errors using the 3D box dataset.

Algorithm FGO EGN SRF ML Ours

Reprojection Error (pixel) 1.634 5.420 1.642 3.476 1.604

As shown in Figure 7, since the reference points are in the ordinary configuration,
the pose determined by our algorithm matches the reference image the best. However,
compared with FGO and SRF, only small improvements are shown by our algorithm, due
to the small distances and narrow FOV, as illustrated in Table 1.

3.2.2. Experiments in Unknown Environments

The KITTI dataset [29] is introduced to simulate the environment during the planetary
exploration and the first 1500 frames of the left camera are used. Similarly, throughout
the simulation, the feature points are extracted and matched as SIFT features, and the
RANSAC method is employed for outlier elimination. The matched points are triangulated
from previous views and tracked in the following frames. According to these 3D-2D corre-
spondences, each pose estimator is used to determine the rover pose. Bundle adjustment
is employed every 15 frames. The rover trajectories determined by each algorithm are
presented in Figure 8 and the rotation and translation errors are shown in Figure 9.
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As observed from Figure 8, due to the drift accumulated over time, the estimated
trajectory gradually diverges from the ground truth for all compared algorithms. Our
algorithm produces the smallest pose errors from the beginning to the end, as shown in
Figure 9. These results are consistent with the above synthetic experiments. Because in real
VO applications, taking the KITTI dataset as an example, the reference points are discretely
distributed in the ordinary configuration, with large distances and wide FOV.

Besides, the average processing times of pose determinations per frame are 13.85 ms
for FGO, 1.625 ms for EGN, 1.893 ms for SRF, 9.66 ms for ML, and 1.704 ms for our
algorithm, respectively.

The above results verify that the proposed pose determination algorithm is the best
for the planetary rover’s VO systems.

4. Conclusions

In this paper, an innovative pose determination algorithm based on the angular
criterion was proposed for planetary rovers. The main novelty of this paper is to introduce
the ICS, which greatly improves the alignment of the reference points from the WCS to the
CCS. The algorithm was explained and verified in both synthetic and real environments.
The simulation results confirmed that the proposed algorithm provides the most accurate
pose determinations compared with the other state-of-the-art algorithms, especially in an
environment with large distance and wide FOV.

Limitations and future improvements. As discussed in Section 3, there are two major
limitations of our algorithm. The first one is that our algorithm only shows great advantages
in a configuration with large distances and a wide FOV. The second one is that the time
consumption for the additional alignment step becomes obvious when the number of
points is more than 80. Therefore, the future improvements will mainly focus on a more
efficient implementation of the angle-based criterion in dense feature scenarios.
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Appendix A

Pseudo-Code of the Proposed Pose Determination Algorithm A1.

Algorithm A1: The Proposed Pose Determination Algorithm

Input : dc
i the projection directions of reference points in the CCS

pw
i the positions of reference points in the WCS

Output: R the rotation matrix of the rover
t the translation vector of the rover

1 Step 1 : Initial Estimation (Rini is parameterized as 9 free variables)
2 QR factorization : QDiRDi ←

[
dc

i
]
×

3 Dimension reduction :
[
dc

i
]−
× ← I2×3QDi

4 Direct linear transformation : F ←
{

dc
i , pw

i
}

5 Singular value decomposition : USVT ← F
6 {Rini, tini} ← V(:, 9)
7 Step 2 : Alignment (Rali is parameterized as small rotation)
8 Transform the reference points from the WCS to the ICS : pm

i = Rini pw
i + tini

9 Solve normal equation : {sali, tali} ← Equation (15)
10 Rali ← Rodrigues(sali)
11 Step 3 : Refinement (Rk and tk are parameterized as Lie algebra)
12 for δθi > threshold do
13 Calculate Jacobian matrix : J ← Equation (19)
14 Solve normal equation : ∆lk ← Equation (18)
15 Recover refinement pose : {∆Rk, ∆tk} ← exp(∆lk)
16 Update rover pose : {Rk+1, tk+1} ← {∆Rk, ∆tk}·{Rk, tk}
17 k← k + 1
18 end for
19 return {Rk+1, tk+1}
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