Asian Journal

Asian Journal of Probability and Statistics

12(4): 58-70, 2021; Article no.AJPAS.68106

ISSN: 2582-0230
LT

Modelling Dynamic Micro and Macro Panel Data with
Autocorrelated Error Terms

Kafayat T. Uthman'", Iyabode F. Oyenuga®, Taiwo M. Adegoke’, Adewale P. Onatunji’
and Olanrewaju V. Oni’

!National Centre for Genetic Resources and Biotechnology, Moor Plantation, Ibadan, Nigeria.
’Department of Statistics, The Polytechnic, Ibadan, Oyo State, Nigeria.

Department of Statistics, University of llorin, Ilorin, Nigeria.

‘LAUTECH Int’l College, Ogbomoso, Oyo State, Nigeria.

’Department of Statistics, College of Animal Health and Production Technology, Ibadan, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author KTU designed the study, performed the
statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors APO and IFO
managed the analyses of the study. Author TMA managed the literature searches. All authors read and
approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2021/v12i430295

Editor(s):

(1) Dr. Dariusz Jacek Jakobczak, Koszalin University of Technology, Poland.
Reviewers:

(1) Eliana Mariela Werbin, National University of Cordoba, Argentina.

(2) Varun Agiwal, Jawaharlal Nehru Medical College, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/68106

Received 05 March 2021
Accepted 10 May 2021
Published 17 May 2021

| Original Research Article

Abstract

Aims: The aim of this study is to determine the best estimator for estimating dynamic panel data model with
serially uncorrelated disturbances and exogenous regressors.

Methodology: In this study, properties of some Dynamic Panel Data estimators are investigated. These are
Ordinary Least Squares (OLS), the Anderson-Hsiao(AH(d), Arellano-Bond Generalized Method of Moment
(ABGMM) one-step, Blundell- Bond System (BBS) one-step, M- estimator, MM estimators and proposed
estimator, Modified Anderson-Hsiao with Arellano-Bond(MAHAB) estimator in the presence of
autocorrelation. Also, this new estimator was proposed by modifying the existing estimators.

Results: Monte-Carlo simulations were carried out at varying sample size (n) ranges from 10-200 and time
period (T) ranges from 5-20 when autocorrelation ( 0) is fixed at 0.3, 0.5 and 0.7. The estimators considered
performed well except OLS and BBS for all time periods.
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Conclusion: AH estimator performed relatively well when the time period is small while ABGMM estimator
outperformed all other estimators when sample size (n) is large for all the time periods considered. ABGMM
shows the largest improvement as sample size (n) and time periods (T) increase. The MAHAB estimator
outperformed all other estimators in small and large sample size irrespective of time period in the presence of
autocorrelation.

Keywords:  Dynamic panel data; Monte Carlo simulation; autocorrelation, time series data, absolute bias and
root mean square error.

1 Introduction

Panel data set is a cross-section or group of entities that are surveyed periodically over a given time span. These
data consist of repeated observations on some subjects at different occasions, generated by pooling time-series
observations across a variety of cross-sectional units. The units may be individuals, households, firms, regions
or countries. Analysis on panel is classified as Micro panels (involve a number of households or individuals)
and Macro panels (involve a number of countries). There are several benefits panel data over conventional
cross-sectional and time-series data as described by [1,2]. Among the benefits are accurate inference of model
parameters is obtained when dealing with panel data. Also, it has more degrees of freedom and sample
variability than cross-sectional data, time-series data for T=1 and N=1 respectively, hence improving the
efficiency of econometric estimates. [3] extended standard error components model to take into account serial
correlation.

Heteroscedastic as well as serially correlated disturbances in one way error component was examined in a panel
data regression model both in static and dynamic [2]. The problems of autocorrelation due to the presence of
lagged dependent variable among the regressors and individual effects characterizing the heterogeneity among
the individuals leads to certain issues which are dealt with by different estimation techniques. The estimation of
fixed effects dynamic panel data models has been one of the major challenges in Econometrics in the last three
decades.

A number of techniques for modeling dynamic panel data have been proposed and compared with Instrumental
Variable (IV) and Generalized Method of Moments (GMM) estimators [4]. Therefore, this study will examine
the performance of different estimators from small samples to large samples with different time dimension. [5]
favorably compared the AH estimator against various GMM estimators.

Arellano M and Bond S [6] made a deduction on the Anderson-Hsiao estimator against different Generalized
Method of Moments (GMM) estimators and inferred that the Generalized Method of Moments (GMM)
procedures produce substantial efficiency gains. Their results also showed that GMM1 performed better than
GMM2 in both their bias and root mean square error.

Judson R and Owen L [7] considered four estimators: an instrumental variables estimator proposed by [8], two
Generalized Method of Moments estimator proposed by [6] and a corrected Least Square Dummy Variables
estimator (LSDVC) derived by [5]. Their results confirmed some research work conclusions about OLS and

LSDV estimators: (1) in both cases, the bias of ¥ are more severe than that of . (2) OLS showed biased
estimates even for large T and (3) the bias of the LSDV estimator increases with » and decrease with T. Their

result also showed that the bias of LSDV estimate is not unsubstantial when T =20, but when T increase to 30,
the average bias becomes smaller although the LSDV does not become efficient. However, all the estimators’
performs better with a larger N and T, and the one-step GMM also performs better than the two-step GMM
estimator. Their result also showed that LSDV performs just as well as the viable alternatives when T=30,
GMM is the best when T < 10 and GMM or AH may be chosen when T=20.

Nerlove M [9] compared the Least Trimmed Squares estimators (LTS), M-estimator, Yohai MM-estimator, S-
estimator and Ordinary Least Squares. The simulation results showed that the S-estimator, M-estimator methods
perform better than Least Trimmed Squares and MM-estimator methods. The result also showed that the S-
estimator has a reasonable efficiency, with the influence of high leverage outliers, and demonstrate high
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breakdown. For 10% breakdown S-estimator increases its efficiency. MM-estimation performed the best overall
against a comprehensive set of outlier conditions. However, his results also showed that when the percentages of
outliers are increased, the performances of the estimators were reduced.

Alma O G [10] compared the Anderson-Hsiao estimator using lagged levels as instrument (AH (1)), Anderson-
Hsiao using lagged differences as instrument (AH (d)), Arellano-Bond GMM estimator (first and second step),
Blundell-Bond GMM estimator (first and second step). Their simulation result revealed that AH(l) and AH(d)
performed reasonably when the time period is small and when time period is moderate while first-step Arellano-
Bond GMM estimator performs better than all other estimators when the time period is large. Meanwhile, the
first-step Blundell-Bond system GMM estimators do not perform well when the panel sample size is large.

In this study it was found that MAHAB estimator is the appropriate choice in a dynamic panel data model with
serially correlated disturbances and exogenous regressors. The rest of the paper is organized as follows: section
1 gives the brief description of SEM models and the interpretation of the terms. Section 2 describes materials

and methods, in section 3 and 4 simulation study and results of the simulation study respectively. Section 5
concludes the paper.

2 Materials and Methods

This work considers one-way error component model with presence of serial correlation in a random effects.
The different degrees of autocorrelation were introduced via random effects one-way error component model
and the coefficient of the serial correlation is taken to be mild, moderate and high. This is in line with the works
of [4,11,7] to mention but few. Most of the previous works done on Dynamic panel data focused on the absence
or no serial correlation of the disturbance term.

2.1 Frameworks of some estimators of dynamic panel data models considered

Consider: Ordinary Least Square estimators,

Y= (yll’A’le’A’yiT’A’yNT)’
ya= (ywaAayNoaAayi,T—laAayN,T—l)s Q)

X = (xl()’A’xNO’A’xi,T—l’A’xN,T—l)

’
Also, let W = [y_lx]. Then the OLS estimator of the parameter vector (aﬂ ) = y is given by
y=ww)y'wy. )
The standard errors under homoscedasticity are obtained from Var(}/ ) =s’ (W W )71 , with

s7 = e%NT—2) , Where €= (y—Wj/). The general heteroskedasticity consistent standard errors are

obtained from (W W )" W 'diag (e'e)W (W'W )™ . Since Cov(yi,H U, # 0) OLS estimator is biased. It is

also inconsistent in direction of both N and T.

Anderson TW and Hsiao C [8] proposed an instrumental Variable (IV) estimator that is consistent for fixed T
and N tends to infinity. Anderson and Hsiao (IV) estimator was applied to the model in first differenced form

Yie = Viga = 5(yi,t—1 - yi,t—z xxi't + xi',,,l )ﬂ tv, + vi,t—l 3)

which cancelled the individual fixed effects assumed to possibly correlate with the exogenous variables
(E(x;t - U ) * 0) and it resulted in the “loss” of one cross-section from the actual estimation.
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The use of level Instruments y,_, was also suggested, or the lagged difference y,, , — y,,_, as an instrument

for the differenced lagged endogenous regressor y,, | — ¥, ,_, -
Anderson-Hsiao (AH) estimator,
~ AH -1 r 17 \-1
7™ =(XPX)"'XPy Where P=2(2Z)"'Z ()

The symbol / or d indicates the use of levels or differences as instrument (}7 AH ()

’};AH(d))

AB estimator is similar to the one suggested by AH but exploits additional moment restrictions, which enlarges

the set of instruments. The dynamic equation to be estimated in levels is y, = dy,, Lt X, f+ u, +v, where

the individual effect £, is eliminated by differencing

’

Yie = Viga1 = 5()’;‘,#1 ~Viia )+ (xit - xz{,tfl )ﬂ tVi = Vi )

The instruments available were looking into for instrumenting the difference equation for each year. For t=3 the
equation to be estimated is

Yis = Via =5(y,2—y,~,)+(x;3—XZQ),B+V,3—V,-2 (6)

Where the instruments (again assuming x being at least predetermined) yil,x;2 and x;l are available. For t=4
the equation is

Yia = Vis 25(%3_J’zz)+(x;4_x,i3)ﬂ+vi4_Vi3° 0

'
il>

. . ' [ .
The instruments y, |, yi ,,X;;, X;, and X;; are available.

Arellano-Bond (AB) estimator,

. 5 -1 5
pABamM =(XWVW’X) Xwyv-'wey. (8)
Where the one-step GMM estimator makes use of a covariance matrix taking autocorrelation into account.
N
V=WGW =>WGW, ©)
i=1

The two-step GMM estimator makes use of the residuals of the first-step estimation to estimate the covariance
matrix as suggested by [12]:

A

V=

A

W/EVVFW,. (10)

1 11

1

The BB System GMM: When the instruments are weak the GMM estimator suggested by AB is known to be
rather inefficient because of the use of the information contained only in differences. The BB suggests making
use of additional level information beside the differences to make it an efficient estimator.

Blundell-Bond (BB) estimator,
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pom=sst _ (xwpwx ) xwv-wy. (a1

The first step GMM estimator makes use of a covariance matrix taking this autocorrelation into account,
enlarged for the level equations while the second step GMM estimator uses residuals of the first step estimation
to estimate the matrix as suggested by [12].

M-estimators were proposed by [13]. M-estimation for regression is a relatively straightforward extension of M-
estimation for location and scale. It represents one of the first attempts at a compromise between the efficiency
of the Least Squares estimator and a resistance estimator - Least Absolute Value (LAV) estimators. Newton-
Raphson and Iteratively Reweighted Least Squares (IRLS) are the two methods to the M-estimates nonlinear
normal equations.

Z\P(%_—xﬂ'}‘l =0 (12)
i=1 S

IRLS express the normal equations as
XWXB = XWy (13)
where W is an n x n diagonal matrix of weights
The initial vector of parameter estimates ,Bo are typically obtained from OLS,
M estimator:
B=(xwx) xwy (14)

MM estimation was introduced by [11] and it combines a high breakdown point with a good efficiency
(approximately 95%) relative to the Ordinary Least Squares estimator under the Gauss-Markov assumptions.
The MM refers to the fact that Multiple M-estimation procedure is used to calculate the final estimate. It has
also become most common robust regression technique for linear regression.

Modified Anderson-Hsiao with Arellano-Bond(MAHAB) estimator: This is the proposed estimator by
modification of Anderson-Hsiao and Arellano-Bond estimator given below. For simplicity, considering # =0

Vi =W T 1+, 15)
Viuet =OWiyn + M+, (16)
Subtracting equation (16) from equation (15)
Yie Vi1 = 5()’1‘;—1 Vi )+ Hi =M Vi = Vi (17)
Equation (17) compactly written as follows
Ay, = 5Ayi’H +Av, (18)

Firstly, equation (18) was differentiated to eliminate the individual effects. The periods (T) for which there
exists valid instruments using logic are YV s Yira

The instrumented equation then becomes
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W'Fy=W'Fxy+W'Fv (19)
Yia = Via Xi3 = X[
T x, —x
Where X — yl3 ) yl,2 i4 ) i3

1

! !
Yiraa = YVir2  Xir —Xira

X=[y .X]p=0.8)W=ww, .. .w]

For each individual, define W, as follows

.l ... .. 0
0

0 .
w,=| [y’1~;v’2] ) is(7 - 2)x (T = 2)(T ~1)/2 matix.
0 0 0 [yi,l""’yi,T—Z]
Yia = Vis
Yis = Via
Yi= :
Yir = Vira
N
V=WGW =Y WG,W,
i=1
2 -1 0
Where G=(,®G,)=|-1 2 -1
0 -1 2

premultiplying the matrix F results in transforming the original observations into differences. Because
Var (F u ) = Fo?F',the covariance matrix J/ = FF' is used as a first step approximation to the covariance
matrix.

The two-step GMM estimator uses the residuals of the first-step estimation to estimate the covariance matrix as
suggested by [14, 15,16]:

N
V=YW Fv, FW, (20)
i=1
Finally, the resulting estimator is
A 5 -1 -
;/:(XWVWX) Xwv'wy 1)
Integrating the blinded model/ estimation with the instrument form
A ’ —1 r7\-1
7=(XPX) "' XPy,where P=2(2'2)"'Z 22)
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Premultiply to get and replacing in the formula for A-H estimator
7 =(xpwv-wex )" xPwy-wpey 23)
3 Results and Discussion

3.1 Simulation study

Monte-Carlo experiments were carried out to compare the behaviour of different estimators under different
circumstances. The parameter & and /3 were compactly given as y = (&, 8)' for the value of B =1.the

parameters that are varied in the simulation are autoregressive coefficient (O, A) and the autocorrelation

coefficient ( p , @ ). The values of ¢ =(0.3,0.5,0.7) , 1 =(0.3,0.5,0.7) , p=1(0.2,0.5,0.9) and
6 =(0.2,0.5,0.9) for combination of the sample size(N=10, 20, 50,100) and Time period (T=5, 10, 15, 20)
with 1000 replications were varied in the study. The assessments of the various estimators considered in this
work were based on the RMSE of parameter estimates.

The data generating process follows [12,13]
1
Yie = @/i,z,l +X it:B+ M TV, 24

Xy = A, +E, (25)

it

Where xit = u(—0.5,0.5)

For the random effects specification, we generate u; = i, + Vv, where t;~ N (0, 1) and error term V,, is

generated by

AR(D): v, =pv,,  +w, (26)
Or by the MA (1) process

Vi, =w, +6w,, 27N

3.2 Results from the simulation study

The simulation result revealed that when N is small, the MAHAB estimator outperformed all other estimators
for all the time periods except when N=10 and T=20, AH (d) estimator performed better than all other estimator
for all the degrees of autocorrelation. When N=50, the MAHAB estimator performed better than all other
estimators for T=5, but as T increases, the AH (d) estimator performed better than all other estimator for all the
degrees of autocorrelation. When N=100, the MAHAB estimator outperformed all other estimators for time
periods 5, 10 and 15 while ABGMM performed better than all other estimators as T increases to 20. But as n
increases to 200, ABGMM outperformed all other estimators for all time periods and for all the degrees of
autocorrelation in terms of absolute bias.

For the estimate of B, the simulation result showed that when n is small, the MAHAB estimator outperformed all
other estimators for all the time periods except when n=20 and T=10 and 15, ABGMM performed better than all
other estimators for all the degrees of autocorrelation. When n=50, the MAHAB estimator performed better than
all other estimators when T=5 and 20 while the robust estimators (M and MM) performed better at T=10, and
AH (d) estimator outperformed better than all other estimators when T=15. As n increases to 200, the MAHAB
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estimator performed better than all other estimators for all the time periods and for all the degrees of
autocorrelation in terms of absolute bias.

For the estimate of §, the simulation result revealed that when n=10, AH (d) and ABGMM estimators performs
better than all other estimator when T is 5. But as T increases, the MAHAB estimator performed better than all
other estimators. When n=20, AH (d) estimator performed better than all other estimators when T=5 while the
MAHAB estimator outperformed all other estimator when time periods is 10, 15 and 20. As n increases to 50,
AH (d) estimator outperformed all other estimators at T=5.10 and 15 when ABGMM performed better than all
other estimators when the time period is 20. When n is large, the MAHAB estimator outperformed all other
estimators for all time periods except when n=100 and T=5 that AH (d) estimator performed better than all other
estimators for all degrees of autocorrelation in terms of RMSE.

For the estimate of B, the simulation result revealed that when n is small, ABGMM outperformed all other
estimators for time periods 5 and 10, while the proposed modified estimator performed better than all other
estimators for time periods 15 and 20 for all the degrees of autocorrelation. As n increases, the MAHAB

estimator outperformed all other estimators for all the time periods and for all the degrees of autocorrelation in
terms of RMSE.

4 Conclusion

The Simulation results on various generating mechanism showed that based on a root mean squares error
criterion, the MAHAB estimator performed well against the existing estimators.

Furthermore, the study also observed that when the value of the autoregressive parameter of the explanatory

variable A is varies, the absolute bias and RMSE of the estimators improves as the values of A increases. The
result of our findings showed that, as to be expected all estimators (with the exception Blundell-Bond System
GMM and OLS) generally performed better with small T and large T. However, the MAHAB estimator seems
to show the largest improvement as n and T increases.

This study concluded that in estimating the parameters of dynamic panel models in the presence of

autocorrelation of the error term, the MAHAB estimator is more preferable. It is recommended to use the
MAHAB estimator when dealing with panel data models in the presence of serial correlation.
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Appendix

Table 1. RMSE of various estimators when n=100 and T=20 for model parameter ( ,3 )

2 e ) ARMA(1,1) RMSE (B) T=20, =100  5=0.5 MM-EST. MAHAB
OLS ABGMM1 SYS1 AH()  M-EST.

0.3 0.2 0.2 0.036223  0.029003 0.202796  0.513665 0.038517 0.044968 0.016232
0.5 0.036217  0.029003 0.179303 0.351116  0.038426 0.044971 0.016232
0.9 0.036214  0.029003 0.416322 0.238191 0.038392  0.044891 0.016232
0.5 0.2 0.036214 0.015211 0.251678 0.289181 0.040089 0.045773 0.016232
0.5 0.036211  0.029003 0.286583  0.256675 0.039085 0.045754 0.016232
0.9 0.036207  0.029003 0.306292  0.209408 0.038317 0.045667 0.016232
0.9 0.2 0.036187  0.029003 0.063073  0.119409 0.043239 0.046883 0.016232
0.5 0.036202  0.029003 0.331865 0.142532  0.043279 0.046173 0.016232
0.9 0.036206  0.029003 0.401434 0.146873 0.040395 0.045912 0.016232
0.5 0,2 0.2 0.035407  0.029003 0.202796  0.470044 0.037941 0.044296 0.015757
0.5 0.035401 0.029003 0.179303  0.339268 0.037927 0.044242 0.015757
0.9 0.035396  0.029003 0.416322 0.237051 0.037873 0.044123 0.015758
0.5 0.2 0.035401 0.015211 0.251678 0.278249 0.039034 0.045159 0.015753
0.5 0.035396  0.029003 0.286583  0.250751 0.038354 0.045107 0.015755
0.9 0.035392  0.029003 0.306290 0.208231 0.037845 0.044993 0.015753
0.9 0.2 0.035381  0.029003 0.063073 0.124562 0.041466 0.045973 0.015750
0.5 0.035393  0.029003 0.331865 0.145881 0.041533 0.045416 0.015758
0.9 0.035392  0.029003 0.401434 0.147911 0.039417 0.045288 0.015756
0.7 0.2 0.2 0.034404 0.029003 0.202796  0.424753 0.037081 0.043218 0.015664
0.5 0.034398  0.029003 0.179303  0.323621 0.037142 0.043114 0.015666
0.9 0.034393  0.029003 0.416322 0.233611 0.037102 0.042962 0.015668
0.5 0.2 0.034401 0.015214 0.251678 0.264403 0.037623  0.044056 0.015663
0.5 0.034395  0.029003 0.286583  0.242064 0.037395  0.043995 0.015663
0.9 0.034394  0.029003 0.306296  0.206128 0.037048 0.043868 0.015665
0.9 0.2 0.034389  0.029003 0.063073  0.128213  0.039787 0.044593 0.015666
0.5 0.034395  0.029003 0.331865 0.146347 0.039338 0.044242 0.015669
0.9 0.034392  0.029003 0.401434 0.148135 0.038324 0.044208 0.015670

Table 2. RMSE of various estimators when n=100 and T=10 for model parameter ( ,3 )

2 0 0 AR(1) ABSOLUTE BIAS (3) n=100 M-EST. MM- P-EST
T=10 EST.
OLS ABGMM1 SYS1 AH(d)

0.3 0.3 0.2 0.010162  0.002366 0.000856  0.001943  0.006294  0.003315  0.000659
0.5 0.014119  0.002366 0.000856  0.001439  0.005037 0.012855  0.000656
0.9 0.017738  0.002366 0.000856  0.001375  0.011992  0.027358  0.000646
0.5 0.2 0.011296  0.002366 0.000856  0.001778  0.009465  0.002811  0.000617
0.5 0.015175  0.002366 0.000856  0.001407  0.001025 0.011307  0.000612
0.9 0.018785  0.002366 0.000856  0.001355 0.013855 0.026603  0.000615
0.7 0.2 0.012288  0.002366 0.000856  0.001704 0.013032  0.001193  0.000573
0.5 0.016157  0.002366 0.000856  0.001403  0.002276  0.009166  0.000552
0.9 0.019613  0.002366 0.000856  0.001339  0.014626  0.025221  0.000542
0.5 0.3 0.2 0.010752  0.001971 0.000917  0.002038  0.006631  0.003568  0.000493
0.5 0.014645  0.001971 0.000917  0.001482  0.000812  0.010549  0.000489
0.9 0.018336  0.001971 0.000917  0.001278 0.017411  0.027317  0.000452
0.5 0.2 0.011918  0.001971 0.000917  0.001973  0.008596  0.003715  0.000359
0.5 0.015792  0.001971 0.000917  0.001467 0.001243  0.010266  0.000345
0.9 0.019141  0.001971 0.000917  0.001255 0.019169  0.026781  0.000303
0.7 0.2 0.012915  0.001871 0.000917  0.001933  0.010972  0.003333  0.000303
0.5 0.016797  0.001971 0.000917  0.001465 0.003106  0.009465  0.000301
0.9 0.019852  0.001971 0.000917 0.001236  0.018329  0.025473  0.000305
0.7 0.3 0.2 0.011031  0.001583 0.000930  0.002018  0.005509  0.003682  0.000512
0.5 0.014684  0.001583 0.000930  0.001522  0.002739  0.009607  0.000588
0.9 0.018185  0.001583 0.000931 0.001179  0.011333  0.026221  0.000513
0.5 0.2 0.012212  0.001583 0.000930  0.002001  0.007298  0.004016  0.000442
0.5 0.015806  0.001583 0.000930  0.001523  0.004163  0.009485  0.000453
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A % [} AR(1) ABSOLUTE BIAS (d) n=100 M-EST. MM- P-EST
T=10 EST.
OLS ABGMM1 SYS1 AH(®)
0.9 0.018978  0.001583 0.000931 0.001156  0.014307  0.025271  0.000492
0.7 0.2 0.013202  0.001583 0.000930  0.001994  0.009351 0.004129  0.000435
0.5 0.016819  0.001583 0.000930  0.001528  0.005553  0.009283  0.000392
0.9 0.019634  0.001583 0.000931  0.001138 0.011675 0.023964  0.000323
Table 3. RMSE of various estimators when n=200 and T=5 for [
A 1% 2} ARMA(,1) RMSE (B) T=5 0=0.7 n=200 MM- P-EST.
OLS ABGMM1 SYS1 AH(d) M-EST. EST.
0.3 0.2 0.2 0.050181  0.060110 0.470631  0.070608  0.053775  0.057329  0.039618
0.5 0.050169  0.052772 0.471389  0.043860  0.053737  0.057405 0.039618
0.9 0.050156  0.044209 0.472447  0.035059  0.053627 0.057462  0.039618
0.5 0.2 0.050208  0.058365 0.464691  0.097112  0.053760  0.057154  0.039618
0.5 0.050198  0.051537 0.464238  0.060793  0.053906  0.057159  0.039618
0.9 0.050171  0.043691 0.465746  0.029366  0.054139  0.057185  0.039618
0.9 0.2 0.050239  0.051524 0.44427 0.079152  0.053737  0.057919  0.039618
0.5 0.050218  0.046535 0.441243  0.064645  0.054305 0.057635 0.039618
0.9 0.050203  0.040488 0.441876  0.036184  0.053827  0.057303  0.039618
0.5 0,2 0.2 0.049093  0.059604 0.440085  0.063842  0.052078  0.055762  0.038919
0.5 0.049083  0.052221 0.443087  0.043794  0.052132  0.055906  0.038919
0.9 0.049071  0.043808 0.445522  0.036846  0.051987  0.055992  0.038919
0.5 0.2 0.049118  0.057677 0.442375  0.094627  0.052426  0.055493  0.038919
0.5 0.049101  0.051017 0.443062  0.058544  0.052646  0.055646  0.038919
0.9 0.049084  0.043243 0.444572  0.029869  0.052881  0.055748  0.038919
0.9 0.2 0.049154  0.050873 0.421312  0.076898  0.052247  0.056183  0.038919
0.5 0.049135  0.045976 0.420230  0.063577  0.052451  0.055973  0.038919
0.9 0.049119  0.040014 0.422282  0.036950  0.052324  0.055799  0.038919
0.7 0.2 0.2 0.047660  0.059072 0.404408  0.057927  0.050339  0.053909  0.038828
0.5 0.047651  0.051721 0.409247  0.044063  0.050149  0.054129  0.038828
0.9 0.047641  0.043397 0.413338  0.039239  0.049947  0.054256  0.038828
0.5 0.2 0.047682  0.056988 0.412498  0.087468  0.050878  0.053620  0.038828
0.5 0.047666  0.050479 0.414724  0.054767 0.051064  0.053871  0.038828
0.9 0.047651  0.042843 0.416590  0.029845  0.051075  0.054055 0.038828
0.9 0.2 0.047722  0.050213 0.392906  0.072278  0.050511  0.054177  0.038828
0.5 0.047703  0.045426 0.393619  0.060742  0.050535  0.054072  0.038828
0.9 0.047687  0.039564 0.396951  0.036830  0.050567  0.054021  0.038828
Table 4. RMSE of various estimators when n=50 and T=5 for ,B
A P 2] MA(1) RMSE () T=5, n=50 AH() M-EST. MM- P-EST.
OLS ABGMM1 SYS1 EST.
0.3 0.3 0.2 0.106431  0.116697 0.363142  0.952899  0.102783  0.102808  0.036214
0.5 0.106475  0.106656 0.380534  0.464541 0.103419 0.102636  0.036003
0.9 0.106515  0.092443 0.393002  0.253823  0.104602  0.102487  0.036413
0.5 0.2 0.105835  0.116085 0.339367 0.926208  0.103167 0.101755  0.035281
0.5 0.105895  0.105975 0.359424  0.499245 0.103604 0.101405  0.034137
0.9 0.105944  0.091822 0.375828  0.281829  0.104418 0.101058  0.033125
0.7 0.2 0.104415  0.115352 0.319733  0.848097 0.103128 0.099783  0.032173
0.5 0.104481  0.105191 0.338098  0.511573  0.103029  0.099296  0.032065
0.9 0.104529  0.091121 0.356224  0.302012  0.103461  0.103642  0.031068
0.5 0.3 0.2 0.106474  0.106831 0.374752  0.433557 0.103422  0.102564  0.037582
0.5 0.106501  0.095521 0.392852 0.296849  0.104301  0.102480  0.035217
0.9 0.106524  0.081447 0.407798  0.204885 0.105526  0.102513  0.034101
0.5 0.2 0.105883  0.106041 0.353666  0.457262 0.103712  0.101332  0.033252
0.5 0.105930  0.094727 0.373942  0.332076  0.104018  0.101074  0.033102
0.9 0.105966  0.080776 0.392135 0.233323  0.104519 0.103415  0.032751
0.7 0.2 0.104459  0.105140 0.332805 0.461632  0.102909  0.103484  0.031292
0.5 0.104516  0.093853 0.352639  0.357631 0.103148 0.101179  0.031251
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1 2 ) MA(1) RMSE (B) T=5, n=50 AH(d) M-EST. MM- P-EST.
OLS ABGMM1 SYS1 EST.
0.9 0.104554  0.080049 0.372442  0.257731  0.102966  0.103273  0.030288
0.7 0.3 0.2 0.106511  0.096430 0.381164  0.253949  0.103816  0.102344  0.035178
0.5 0.106519  0.085116 0.400609  0.213694  0.104713  0.102557  0.034008
0.9 0.106532  0.071937 0.418106  0.168627  0.104943  0.102744  0.034005
0.5 0.2 0.105921  0.095573 0.362341  0.280227  0.103739  0.107146  0.035888
0.5 0.105952  0.084313 0.383555  0.245007  0.103917  0.105883  0.032881
0.9 0.105981  0.071286 0.403856  0.195496  0.104767  0.106802  0.031872
0.7 0.2 0.104490  0.094620 0.341966  0.298137  0.103025  0.098726  0.034186
0.5 0.104535  0.083444 0.362811  0.271539  0.102972  0.104793  0.032525
0.9 0.104569  0.070595 0.384546  0.220252  0.103080  0.099503  0.031293
Table 5. Absolute bias of various estimators when n=100 and T=20 for &
A P 2] ARMA(,1) RMSE (B) T=20, n=100 6=0.7 MM- P-EST
OLS ABGMM1 SYS1 AH(d) M-EST.  EST.
0.3 0.2 0.2 0.036210  0.028716 0.048747  0.316261  0.038486  0.044933  0.018188
0.5 0.036212  0.028716 0.436517  0.253642  0.038371  0.044919  0.018188
0.9 0.036215  0.028716 0.413555  0.197932  0.038048  0.044876  0.018188
0.5 0.2 0.036204  0.028716 0.048747  0.222577  0.039391  0.045795  0.018188
0.5 0.036206  0.028716 0.048747  0.206769  0.038532  0.045757  0.018188
0.9 0.036209  0.028716 0.129234  0.182227  0.037806  0.045692  0.018188
0.9 0.2 0.036186  0.028716 0.048747  0.109866  0.042538  0.046505  0.018188
0.5 0.036204  0.028716 0.445736  0.128344  0.041234  0.045982  0.018188
0.9 0.036209  0.028716 0.048747  0.138938  0.038373  0.045966  0.018188
0.5 0,2 0.2 0.035395  0.028716 0.048747  0.300971  0.037944  0.044237  0.018162
0.5 0.035395  0.028716 0.436517  0.250854  0.037813  0.044176  0.018162
0.9 0.035398  0.028716 0.413554  0.200442  0.037571  0.044085  0.018162
0.5 0.2 0.035391  0.028716 0.048747  0.216153  0.038588  0.045174  0.018162
0.5 0.035391  0.028716 0.048747  0.204766  0.038107  0.045103  0.018162
0.9 0.035393  0.028716 0.129234  0.184393  0.037421  0.044994  0.018162
0.9 0.2 0.035381  0.028716 0.048747  0.113274  0.040763  0.045736  0.018162
0.5 0.035393  0.028716 0.445736  0.130694  0.040103  0.045333  0.018162
0.9 0.035395  0.028716 0.048747  0.140536  0.038046  0.045371  0.018162
0.7 0.2 0.2 0.034392  0.028716 0.048747  0.284354  0.037089  0.043136  0.017292
0.5 0.034392  0.028716 0.436517  0.245773  0.037053  0.043036  0.017292
0.9 0.034394  0.028716 0.413554  0.201288  0.036809  0.042902  0.017292
0.5 0.2 0.034391  0.028716 0.048747  0.208437  0.037486  0.044071  0.017292
0.5 0.034393  0.028716 0.048747  0.202732  0.037166  0.043989  0.017292
0.9 0.034391  0.028716 0.129234  0.185189  0.036766  0.043851  0.017292
0.9 0.2 0.034386  0.028716 0.048747  0.116022  0.039132  0.044488  0.017292
0.5 0.034394  0.028716 0.445736  0.132003  0.038733  0.044224  0.017292
0.9 0.034396  0.028716 0.048747  0.140772  0.037117  0.044278  0.017292
Table 6. RMSE of various estimators when n=100 and T=20 for
2 P2 0 ARMA(1,1) ABSOLUTE BIAS (5) n=100 5=0.3 MM- P-EST
T=20, EST.
OLS ABGMM1 SYS1 AH(d) M-EST.
0.3 0.2 0.2 0.001414  0.000178 0.004742  0.000397  0.003522  0.005629  0.000274
0.5 0.000197  0.000178 0.377190  0.000516  0.002615  0.006318  0.000274
0.9 0.001405  0.000178 0.408636  0.000603  0.001208  0.006843  0.000274
0.5 0.2 0.001248  0.000178 0.152399  0.000626 ~ 0.011992  1.26E-05  0.000274
0.5 0.002250  0.000178 0.307599  0.000608  0.009138  0.003097  0.000274
0.9 0.003446  0.000178 0.376933  0.000612  0.006097  0.005466  0.000274
0.9 0.2 0.002352  0.008340 0.313771  0.000747  0.025008  0.013087  0.000274
0.5 0.003586  0.000178 0.364291  0.000714  0.023539  0.006905  0.000274
0.9 0.004746  0.000178 0.004742  0.000677  0.021665  0.001557  0.000274
0.5 0,2 0.2 0.001286  0.000178 0.004742  0.000459  0.001971  0.005913  0.000249
0.5 2.82E-05  0.000178 0377191  0.000537  0.002146  0.006215  0.000249
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2 2 0 ARMA(1,1) ABSOLUTE BIAS (3) n=100  6=0.3 MM- P-EST
T=20, EST.
OLS ABGMMI1 SYS1 AH(d) M-EST.

0.9 0.001565 0.000178  0.408636 0.000611 0.001460 0.006789  0.000249

0.5 0.2 0.001352  0.000178  0.152399  0.000635  0.009730  0.000879  0.000249

0.5 0.002375  0.000178  0.307590  0.000614  0.008246  0.003523  0.000249

0.9 0.003561  0.000178  0.376933  0.000618  0.005989  0.005738  0.000249

0.9 0.2 0.002544  0.008342  0.313771  0.000743  0.024286  0.012577  0.000249

0.5 0.003726  0.000178  0.364291  0.000709  0.021446  0.006024  0.000249

0.9 0.004812  0.000178  0.004742  0.000676 0.019308  0.000735  0.000249

07 02 0.2 0.001125 0.000178  0.004742 0.000512  0.000749  0.006181  0.000215
0.5 0.000156  0.000178  0.377192  0.000557  0.001257  0.005966  0.000215

0.9 0.001733  0.000178  0.408636  0.000617  0.001046  0.006491  0.000215

0.5 0.2 0.001498  0.000178  0.152399  0.000643  0.007883  0.001553  0.000215

0.5 0.002512  0.000178  0.307590  0.000621  0.007294  0.003868  0.000215

0.9 0.003688  0.000178  0.376933  0.000622  0.004832  0.005765  0.000215

0.9 0.2 0.002745  0.008342  0.313771  0.000739  0.022681 0.011547  0.000215

0.5 0.003787  0.000178  0.364291  0.000703  0.018943  0.005246  0.000215

0.9 0.004905  0.000178  0.004742  0.000675 0.017043  0.000169  0.000215
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