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Abstract

In this paper, a new method called Sumudu Transform SBeesmposition Method (STSDM) i
applied to three different models of Oscillatory problems (#@&nPol, Duffing and Nonlinear Oscillato

and Adomian Polynomials. The Sumudu Transform was used tal &wgigration of some difficul
functions or rigour of reducing order of differential edoas to system of differential equations, f
Series Expansion was employed to increase the ratenvexgence of the solution while Adomig
Polynomials were used to decompose the nonlinear tefnteodifferential equations. The resu
obtained in all the problems considered showed that the retivorh was very effective, accurate 4
reliable.

[2)

y

equations). The method was developed by Combining the Suimadsform, Series Expansion Schemes

he
AN
ts
nd
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1 Introduction

Here in this section, we present brief introduction ofabebined methods
1.1 Sumudu transform

Sumudu Transform is an integral-based transform name@détugula [1]. Since the formulation of the
method, many researchers have worked tirelessly usasgransform to obtained results of many physical
problems and thereby reported that the transform was a powesfdor obtaining a convergence solution
of many differential equations [2-6].

Sumudu Transform is written as
o 1 _X
F(u):s[f(x)]:joaf(x)e4dx (1)

for any f(x).

By the conversion rule

)

F(u)=> nlau" (2)

n=0

for function f(x) which can be expressed as a polynomiahd®m@ convergent infinite series ?6?0.
Likewise the derivative property of Sumudu transformivewg as:

h (m)
Let F(x) be a continuous valued-function. Then, the Sumudu Transxﬂ)rmt derivative (1E (X)) of
F(X) for m21 g given as:

s[ 17(9]=={ (3] €0~ 2O)-.- £ (0} )

It can be applied to the solution of ordinary convergenagguos and control engineering problems.

Among others, the Sumudu transform was shown to have ue#erping properties, and hence may be used
to solve problems without resorting to the frequency alamThis is one of the strength for this new

transform, especially with respect to applications in lgnols with physical dimensions. In fact, the Sumudu
transform which is itself linear preserves linear functiarg] hence in particular, does not change units
[1,7].

1.2 Series expansion

In the 14th century, the earliest examples of the uSayior series and closely related methods were given
by Madhava of Sangamagrama termed [8-9]. Though no rexdnds work survived later the writings of
Indian mathematicians suggested that he found a number of spasés of the Taylor series, including
those for the trigonometric functions of sine, cosine, tanged arctangent. The Kerala school of astronomy
and mathematics further expanded his works with variousssexpansions and rational approximations till
the 16" century.
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1.3 Adomian decomposition

In 1980s, George Adomian introduced a new method to solvéneanidifferential equations [10-12]. This
method has since been termed the Adomian Decomposition Methal)(And has been the subject of
many investigations such as [13-21]. The ADM involves sepay the equation under investigation into
linear and nonlinear portions. The linear operator repriggettie linear portion of the equation is inverted
and the inverse operator is then applied to the equation angi@onsiderable given conditions.

The nonlinear portion is decomposed into a series caltemian polynomials. This method generated a
solution in form of a series whose terms are deternimea recursive relationship using these Adomian
polynomials.

In this study, STSDM is applied to solve the oscillatiquaions considered by [22-24] and the results
obtained are in excellent agreement with the existing results

2 Mathematical Formulation of Sumudu Transform Seres
Decomposition Method

Derivation of the Sumudu Transform Series Decomposition MetBo8DM)
Given a general nonlinear non-homogeneous differential equati

Ly(x)+ RY( X+ NY X= ¢ X (4)
where L is the highest order linear differential opera®is the linear differential operator of order less

than L, N is the nonlinear differential operator, U is dependent variable, x is an independent variable and
g(x) is the source term which is assumed to have sexgnsion.

Application of the Sumudu Transform on equation (4) resutitd i
S[LY X+ $ Ry M+ [S Ny)Ix= [ ] 9] x (5)

Using the differentiation property of the Sumudu transf(8jrin (5) to have

m-1 (k)
DO S X XTO) ysiry 31+ § Ny )t = [S(0)lx (6)

u u(m—k)

o

where

T y(9*(0) _ T y(0)"

u(m_k) o u(m_lq

k=0

Further simplification of (6) gave

m-1 (k)
st -y YO B Ry (S (1% [ 8010 ™)

u (m-k

where S denotes the sumudu transform,

Application of Sumudu inverse Transform on (7) yielded
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y(x)=G(Y~S*[ @[[ 8 Ry)k+ [S KyIK]] (8)

and,
(k)
G(x) = S{ [Z X0 Ds g xﬂ (©)

Where G(x) represents the term arising from the souroeded the prescribed initial conditions.

The representation of the solution (8) as an infinite sesigven below:
y(x) =2 ¥ (X (10)
The nonlinear term is being decomposed as:

NY(O= Y A (%A ¥(H ¥ () )

WhereA‘ are the Adomian polynomials of functior¥§, yl, y2... Ya and can be calculated by formula
given in [25] as:

NSICRTENTE Bt o [ W x} w012, 2

Substituting (10) and (11) into (8) yielded

iym(x):e(x)—S{ sm[{[ 3 X OKHY Jﬁ\ﬂ 13)

Simplification of equation (13) as many times as possitgsulted into series solution and generally
recursive relation given by:

(k)
yo<x):e<x):sl{ {Zy(x?m Y0, $0)>}H R0 (14)

Yoa(9=-S"[ SB[l RY k{ A]] (15)

when the Sumudu Transform and the Sumudu inverse Transfermapplied on (15) respectively, the

iteration y°, yl, Y Yn were obtained, which in turn gave the general solution as

YY) = %9+ %(+ y( 3+ ¥ x+... (16)
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3 Numerical Application

In this section three different types of oscillation proideare solved by the new method (STSDM).
3.1 Van Der Pol’'s equation

Consider the Van Der Pol’s equation considered by [15] gisen a

d’x(t) L a9
dt? dt
x(0)=0, X (0)=1

+X(t) + xz(t)% =2cost- codt 7)

The truncated Taylor series expansionfoql) is given as

t* 19*  181°
+ +

= = 720 (18)
Substituting (18) into (17) gave
dzx(t) d)(t) >( ) f 19t‘ 181f
dt? MG Uit 2 24 720 19)

Finding the STSDM of (19) resulted into

i2[8[>(t)] X0)- Uk(O)] 1+ 4-194+ 1816+ .= Hd)c(i(tt)+ X ¥ X(%H (2C

Substituting the initial condition in (17) into (20) and simplifyirayg

S[Xb]= ut ¢+ d-19 G+181d+ .- 4 %(d)(;(tth F X %H 21

Finding the Sumudu inverse of (21) resulted into

1,, 1., 19
X () =t+=t2+ =t = —Zt%+ .. 22
o(V) 2 24 720 (22)

xl(t)=—sl[u S{[dx"(th ¥+ /adxd"f‘)m
xz(t):—s*{u S{(d"l“h KO3+ e—dgﬁ)ﬂ

xm(t)=—s{u2 $( L6l s Ad“m (24)

(23)

and,
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dx, (1)
dt s the nonlinear part that can be decomposed by (12) as follow:

R R

Ao =% (t) dxo(t)

((2x (t)xl(t)) Xl(t))

Using the Adomian polynomial (24) in (25) and iterating géneeapproximate solution

1 1

Xl(t)=——tz——t3—ét4—£t5—ﬁt6— 191t8+ 23t9+ 10,

2 3 8 120 720 40320 12960 28800
1 o, 19 o, 223 5 861 L. 209 s,

1920 103680 2695680 7257600 10368000
xZ(t)=1t3+1t“+it5——1t6——3t7— 43 1o 1031, 9670 _

6 24 90 70 1120 36288 4838
210103 ., 191833t12_ 10903t13_ 25489t14+ 603259t15
19958400 39916800 5443200 62899200 6604416000

32899
— %+
261273600
The general solution x(t) is given as;
X(1) = % () + % () + %(9
x(ty=t-Ltp s Ly Lys_ 296 257, 1739, 179,
6 24 15 360 5040 40320 6720
21193 ,, 49927 ,, 1139 ,, 543541 ,; 85853, .,
1209600 4989600 246400 283046400 18869760
__ 235063 .5 32899 .,
3302208000 26127300

3.2 Duffing equation
Let’'s consider the Duffing equation examined by [16]

X"(t)+2X (1) + x(t) + 8¢ ()= e*

1

x(O):%, X(0)=-3

Following the same procedure, the general solution ofi€8ptain as

(1) = % () + (9 + %(9+ %()
x(=2-Steleo Ly Lo Lesg Lgey
2 2 4 12 48 240 1440

D

(25)

(26)

(27)

(28)

(29)
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3.3 Nonlinear oscillatory system equation

The nonlinear oscillatory system equation given by [17lss eonsidered here

X"(t) + x(1) + 0.1 (1)= 0 (30)
x(0) =1, x'(0)=0

The general solution of (30) is obtained by the same procedure a

x(1) = % (1) + x (0 + %0+ x()+ x(9
x(t) =1-0.55000000° + 0.0595833383- 0.0056069444% 31)(
+0.000778375496tf +

Since one of the major characteristics of an oscifapooblem is its ability to exhibit periodicity thereéor
(31) cannot exhibit periodicity on its own, and to make ftilei periodicity three steps are taken which are:

1. Find the Laplace transform of (31)
2. Find the diagonal Pade approximation of solution of step one
3. Obtain the Laplace inverse transform of the residtep two

Following all the itemized steps above, (31) is obtain as:

y(t) =0.01341156746 0.002118710698c0s(3.20344 )+ 0.9844697222 cos(1.045887839 ) |

4 Numerical Results

Table 1 displays the comparison of results obtained for d&a Pol's equation by STSDM with the exact,
New Algorithm for the Decomposition Solution (NADS) and théofian Decomposition Method (ADM),
Table 2 shows the comparison of results obtained for Duffipgtton by STSDM with the exact and the
Differential Transform Method (DTM) and Table 3 dispt the comparison of results obtained for
Nonlinear Oscillatory system equation by STSDM with tkace and Differential Transform Method (DTM)
while Figs.1 is the graphical representation of the solst@monlinear oscillatory system equation

Table 1. Comparison between STSDM with Exact (E), thBlew Algorithm for the Decomposition
Solution (NADS) and the Adomian Decomposition MethodADM) for Eq. (17)

T Exact STSDM NADS ADM E-STSDM E-NADS E-ADM
00 O 0 0 0 0 0 0
0.2 0.198669: 0.198706: 0.198747' 0.1987511 0.000036 0.000078: 0.000081
0.4 0.3894183 0.3892662 0.3909898 0.3912929 0.0001521 0.0015715 0.0018746
0.6 0.5646424 0.5578822 0.5750719 0.5797338 0.0067602 0.0104295 0.0150914

Table 2. Comparison between the STSDM with the Exact andumerical Solution of Duffing Equation
by the Differential Transform Method for Eq. (28)

t Exact STSDM DTM E-STSDM E-DTM
0.1 0.4524187090 0.4524187090 0.4524187092 1:8+10 2%10°
0.2 0.4093653764 0.4093653764 0.4093653767 6:1*10 3*10%¢
0.3 0.3704091103 0.3704091103 0.3704091102 6:8+10 1*10°
0.4 0.335160022 0.335160022 0.335160022 1.9x1ct! 1*10°
0.5 0.3032653301 0.3032653298 0.3032653298 5810 3*10%¢
0.€ 0.274405818 0.274405818 0.274405818 9.0r1c! 1*10%¢
0.7 0.2482926519 0.2482926521 0.2482926520 2:%+10 1*10¢
0.8 0.2246644819 0.2246644830 0.2246644819 1:%*10 0

0.¢ 0.203284829 0.203284833 0.203284829 3.7*1C°% 2%10°%
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1.0 0.1839397196 0.1839397321 0.1839397202 19*10 610"
Table 3. Comparison between the STSDM with exact andfierential transform method for Eq. (30)
T Exact STSDM DTM E-STSDM E-DTM
0 0.9989671200 1.000000000 1.00000012 0.00103288036 0.0010330000
0.1 0.988720896 0.994505953 0.994506090 0.0057850568 0.0057851943¢
0.2 0.9676087087 0.9780949769 0.9780951673 0.01048626816 0.01048645863
0.2 0.935862578 0.950978588 0.950978863 0.015116010C 0.0151162851
0.4 0.8938313928 0.9135028684 0.9135032383 0.01967147556 0.01967184549
0.5 0.8419770716 0.8661393040 0.8661396913 0.02416223236 0.02416261970
0.€ 0.780869489 0.809472944 0.809473003 0.0286034554 0.0286035137
0.7 0.7111802136 0.7441887223 0.7441874427 0.03300850866 0.03300722911
0.8 0.633675123 0.671056870 0.671051854 0.0373817465 0.0373767303
0.9 0.5492059951 0.5909183755 0.5909046435 0.04171238036 0.04169864839
1.0 0.4587011362 0.5046712732 0.5046395018 0.04597013696 0.04593836558
1'% d B g " g i 3
P & 2 32 £ & £ % 2 & ¢
L ot s e i e R g & &Y °
1% 4% % 4. 9. N4 NN W e
I & 4t sq N 5 0% 4 &
T It i 14 41 47 %% 3% U4 24 .
Diplscement(y(y) 0544 ¢ ¢ 41 §T 79 @ 43 3. ¢ @] %
i Pl ! 3 8 g < - 8 - 2 i i
1 ] b - O « & ol s e a B &
» T @ ¥ A 4% de a4 W by A
' 14T 6% %¢ 2373 47 4N %%
T2 ddcd &34 507049 ]+ 3
ol + 1T 1 2 e g8 a4 94
14 # 19 179 0T % S0 1 g &g 0y o T
k ol 2 d ey ¥ L S W g 1 & &
TRISLELE R TECEINERL
I1¢ 14 3¢ %2 oF 24 34 94 A4 94
031 14 1¢ %8 o2 &7 47 44 N4 e i
134 14 %¢ 44 & Uf U5 90 &0 s
¥ O Is % ¥ B 3 4 T o o
WO W o e g W OH n o
L% ¢ & & € & ¥ € ¢ 9
[----- Exact ¢ STSDM DTM]

Fig. 1. Graph of displacement against time for the solutimEq. (30)
5 Conclusion

In this work we presented an alternative method of sglWan Der Pol's, Duffing and Nonlinear
Oscillatory system equations called Sumudu TransformeS@&ecomposition Method. The method offers
significant advantages in terms of its easiness, tifaigvard applicability, its computational effectiveees
and its accuracy. The comparison of the results obtaipgdlebSumudu Transform Series Decomposition
Method, with the exact, New Algorithm for the DecompaositBolution (NADS), Adomian Decomposition
Method (ADM), and Differential Transform Method (DTM) mhed that STSDM gives a better
approximation and at the same time it is capable of spgeqti the rate of convergence of the solution.
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