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Abstract 
 

Steady oscillatory flow in a bifurcating green plant is investigated. The channel is assumed 
axisymmetrical and porous; the fluid is Newtonian, incompressible, electrically conducting and 
chemically reactive but of the order one homogeneous type. The models are developed using the 
Boussinesq’s approximations. The nonlinear and coupled equations governing the flow are non-
dimensionalized and solved analytically using the similarity transformation and perturbation series 
solutions.  Expressions for the concentration, temperature and velocity are obtained and presented in 
tabular form. The results show that the increase in the chemical reaction rate, Hartmann number (for 
0.1≤M2≤1.0), Heat generation parameter, Grashof number (for 0.1≤Gr≤1.0), Peclet number and 
Reynolds number increase the concentration and velocity, and specifically, the increase in the bifurcation 
angle decreases the concentration but increases the velocity. Furthermore, it is seen that for Hartmann 
number M2

≥5.0 the velocity drops. This model has relevance to agriculture. In fact, the increase in the 
flow variables enhances the growth and yield of plant (crops). 
 

 
Keywords: Bifurcation; green plants; MHD; oscillatory flow; porous channel. 
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1 Introduction 
 
A number of studies have been carried out on the flow of soil mineral salt water and 
manufactured/synthesized materials in the green plants. Some studied the flow through the leaves, some the 
roots, and others the tree trunk. On the flow through the tree trunk, [1] studied the flow dynamics of soil 
mineral salt water upward and that of manufactured/synthesized materials in the leaves downward a tree 

trunk whose aspect ratio (the ratio of the length to the diameter) is far less than one. That is, 1<<=ℜ
l

d
. 

According to him, such flow is laminar, Poiseuille and fully developed. Such model tends to be applicable 
to flow in trees like iroko, palm tree, paw-paw, plantains and the likes.  The model has some limitations. It 

did not consider the case where the aspect ratio is approximately greater than or equal to one (i.e. 1≥ℜ ), a 
situation in which bifurcation angle and Reynolds number play effective roles, as may be seen in plants that 
furcated early in their growth stage such as pears, mangoes, guava, and so on; the effects of the nature of the 
soil on which the plant grows, and positive environmental temperature changes on the flow. 
 
More so, his solutions show the existence of imaginary parts. He did not emphasize their contributions, 
which are exhibited in the form of oscillatory motion. Therefore, in this paper, we are motivated to 
investigate the oscillatory flow characteristics of the soil mineral salt water through the trunk of a 
bifurcating green plant, taking cognizance of the nature of the soil on which the plant grow, and positive 
environmental temperature changes on the flow. 
 
Reports exist in literature on some related flow behaviours in both bifurcating and non-bifurcating systems. 
For example, [2-4] in their various ways studied the flow in bifurcating channels and noticed that the 
increase in bifurcation angle and Reynolds number increase the transport velocity; [5] examined the steady 
fully developed laminar flow through a pipe by experimental and finite difference numerical scheme, and 
observed among others, that the axial velocity asymptotically approaches its limit as the Hartmann number 
becomes large;  [6] studied the MHD free convection flow through a vertical porous channel using the finite 
difference numerical approach, and noticed that the velocity decreases with the increase in the magnetic and 
porosity parameters; [7] examined the the oscillatory flow of a viscous incompressible Newtonian fluid in 
an infinite vertical parallel plate channel filled wih porous media using the method of double perturbation, 
and obtained the approximate  solutions to the coupled nonlinear partial differential equations governing the 
flow; [8] studied  two-dimensional flow of Jeffery fluid with small suction in a rectangular channel , 
wherein they investigated the viscoelastic behaviour of non-Newtonian fluids subject to time harmonic 
oscillation using the perturbation method of Wentz- Krammer-Brillouin (WKB) and variation of parameter , 
and found that the amplitude and penetration depth decrease with the increase in the suction parameter and 
compression of the wave; the decrease in the penetration depth are higher in Jeffery fluid than in viscous 
fluids with increasing  suction on the wall; [9] considered the fully developed MHD mixed convective flow 
in a vertical channel filled with nano-fluids using the closed form solutions, and noticed that magnetic field 
enhances the nano-fluid velocity. Even so, [10] studied the magneto-hydrodynamic free convective and 
oscillatory flow through a vertical porous channel and found amidst others, that the flow velocity increases 
with the increase in the Grashof number but decreases due to increase in the porosity parameter or magnetic 
parameter; [11] investigated the MHD convective force flow in bifurcating porous fine capillaries, and 
found that magnetic field reduces the flow velocity, whereas the convective force increases it. More so, [12] 
considered analytically a  span-wise fluctuating magneto-hydrodynamic (MHD) convective flow of a 
viscous, incompressible and electrically conducting fluid through an infinite vertical porous channel, with  
the walls subjected to span-wise cosinusoidally varying species concentration and temperature. They 
observed among others, that the velocity increases with the increase in the buoyancy forces due to 
concentration and thermal diffusions, and permeability but decreases with the increase in the magnetic field, 
Prandtl number, heat generation/absorption parameter. [13] elaborately investigated analytically the MHD 
free convective three-dimensional flow of an incompressible viscous fluid in a vertical parallel plates 
channel filled with a porous medium, and observed amidst others, that the velocity component for the 
primary flow enhances with the increase in Reynolds number, Darcy parameter, hall parameter, Grashof 
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number, Peclet number and pressure gradient but reduces with the increase in the intensity in magnetic field 
and radiation parameter; [14] studied numerically the unsteady heat and mass transfer flow with a 
temperature dependent viscosity past an isothermal oscillating cylinder using the method of finite 
difference, and observed among others that the increase in the Schmidt number, Prandtl number, Hartmann 
number decrease the velocity; the increases in the chemical reaction rate and  viscosity variation parameters 
decrease the concentration, the increase in the chemical reaction rate parameter decreases the skin friction; 
the increase in the viscosity variation parameter decreases the Nusselt number . 
 
In this study, we investigate the effects of chemical reaction rate, heat exchange parameter, Hartmann, 
Grashof, Peclet, and Reynolds numbers, and bifurcation angles on the oscillatory flow of soil mineral salt 
water through the trunk of a bifurcating green plant whose aspect ratio is approximately equal to or greater 
than one. 
 
The paper is organized in the following manner: section 2 is the methodology; section 3 is the results and 
discussion, and section 4 holds the conclusions.  
 

2 Methodology 
 
Natural systems such as plants are cylindrical and porous. The soil mineral salt water is, by the nature of its 
chemical content a magneto-fluid. The fluids in plants are not pumped by any physical means. Therefore, 
through the effects of external/environmental temperature and concentration differentials, their flow is 
naturally convective. The Reynolds number of the flow is much less than one (i.e. Re<1) such that the flow 

is creepy (see [1]). Let )',','( xr θ  and )',','( wvu  be the polar orthogonal coordinates and velocity 

components, respectively. We assumed the velocity is axisymmetrical about the  'θ  axis such that 

variations about 'θ is zero and as such the coordinates and velocity components are reduced to )','( xr and 

)','( wu . Then, the mathematical models describing the flow of the fluid in a bifurcating green plant as 
shown in Fig 1, considering Boussinesq approximations are 
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where ρ the fluid density,
'p  the pressure, µ the viscosity, mµ  the magnetic permeability of the fluid, g the 

gravitational field vector acting in the reverse direction of the flow, 'T  and 'C  are, respectively, the fluid 
temperature and concentration (quantity of material being transported), while Tw  and Cw are the constant 
wall temperature and concentration at which the channel is maintained, whereas T∞ and C∞  are, 
respectively, the temperature  and concentration at equilibrium, κ  is the permeability parameter of the 

porous medium, 2
oB  is the applied uniform magnetic field strength due the nature of the soil and the earth 

field, σe is the electrical conductivity of the fluid,ok  the thermal conductivity, Cp the specific heat  capacity 

at constant pressure, Q is the heat generation/absorption coefficient, D the diffusion coefficient, 
2
rk  is the 

rate of chemical reaction of the soil mineral salt solution.  
 
The analysis considers a homogeneous first order chemical reaction (a reaction which is proportional to the 

concentration ) with constant rate 
2
rk  between the diffusing species and the fluid; the porous medium is 

non-homogeneous, therefore, its permeability is anisotropic; the fluid is assumed to have constant properties 
except that its density varies with the temperature and concentration; the viscosity of the fluid is a function 
of the temperature and magnetic field; the applied magnetic field and magnetic Reynolds number are 
assumed to be very small so that the induced magnetic field and hall effects are negligible. 

  

 
 

Fig. 1. The physical representation of the model 
 
The general analysis of the physical geometry of the problem presented in Fig. 1 shows that  the  boundary 
conditions can be split into two distinct parts, namely, the upstream, 0'<x and the downstream, 0'>x

. 
The flow in the mother is laminar and Poiseuille with the characteristic parabolic profile. The local stream-

wise direction in the mother tube is 
'x
 while in the daughter tube, it is off the

 'x - axis. The problem of the 

wall curvature on the geometrical transition between the mother and the daughter tubes exists. To fix up the 
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role of curvature, a very simple transition wherein the radius of the daughter is assumed equal to that of the 
mother and the variation of the bifurcation angle is straight-forwardly used (see [4]). 
 
The boundary conditions are as follows: 
 
In the upstream/mother channel 
 

     ∞∞ ==== CCTTwu '''' ,,1,1     at 0' =r                        (6) 
 

     ww CCTTwu ==== '''' ,,0,0    at 1' =r                         (7) 

 
and in the downstream(daughter channel) 
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where mPe = ScRe , hPe = PrRe , M1
2=χ2+M2, β1 and β2 are the volumetric expansion coefficient for 

temperature and concentration respectively, Θ  and Φ  are the non-dimensionalized temperature and 

concentration, respectively,ℜ  is the aspect ratio,  is the kinematic viscosity, Ro is the characteristic 

radius of the tree trunk, is the soil parameter,  is the Reynolds number, is the heat exchange 

parameter,  is the porosity parameter,  is the chemical reaction parameter,  the Schmidt number, 

Pr the Prandtl number, (Gr, Gc) are the Grashof number due to temperature and concentration differences, 
while (Peh , Pem) are the Peclet number due to heat and mass  transfers,

 
we have  

 

      

( )
0

1 =
∂

ℜ∂+
∂

∂
x

w

r

ru

r                                                
(10) 

                                                                                                           

     r

p

r

u

r

u

rr

u

∂
∂=−

∂
∂+

∂
∂

22

2 1

                                                  (11) 

 

      
( ) Φ−Θ−

∂
∂ℜ=+−

∂
∂+

∂
∂

GcGr
x

p
wM

r

w

rr

w 221

'
χ                                      (12) 

                                         
 

υ
2M Re 2N

2χ 2
1δ Sc



 
 
 

Okuyade and Abbey; ARJOM, 2(4): 1-19, 2017; Article no.ARJOM.31306 
 
 
 

6 
 
 

     
)(

1 2
2

2

x
w

r
uPeN

rrr h ∂
Θ∂ℜ+

∂
Θ∂=Θ+

∂
Θ∂+

∂
Θ∂

                                                (13)        

                                                                     

     
)(

1 2
12

2

x
w

r
uPe

rrr m ∂
Φ∂ℜ+

∂
Φ∂=Φ+

∂
Φ∂+

∂
Φ∂ δ

                                  (14)             

            
with the boundary conditions: 
 
for the upstream (mother channel): 
 

     u= 0, w = 0   and Θ = wΘ , Φ  = wΦ        at   r = 1                                                 (15) 

 
and for the downstream/daughter channel:      
 

u = 0, w =  0   and  Θ = wΘ1γ , Φ  = wΦ2γ       at  xr αℜ=                            (16) 

 
Equations (10)-(16) are nonlinear and coupled. Therefore, we seek for solutions of the form 
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with the boundary conditions  
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Similarly, eliminating ooΦ  from equations (28) and (29) by taking 
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2/1

611
2

1010
22

1 2 λεγγεγεγ +ℵ+ℵ−Φ=Θ−+−
   (39) 

 

and
      

             
 

          
(40) ( ) ( )[ ] ( ) ( )rIDRxPeRRRDrMDr om

2/1
611

2
1010

2
1

2
1 2 λεγγεγεγδ +ℵ+ℵ−Θ=Φ−+−
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More so, eliminating 10Θ from equations (39) and (40) by multiplying through equation (39) by εγR  and 

taking 
 

( ) ( )[ ]εγRNDMD rr −+− 22
1   

 
of equation (40), respectively, and the subtracting the first result from the second, we have  
 

  
( )( )[ ]( )( )[ ] 10

222
10

2
1

2
1

22
1 Φℜ−Φℜ−−−ℜ−−− εγεγδεγ rrrr DMDNDMD  

                    ( ) ( )rIDxNNPe oh
2/1

6
222

11
32 2 λεγεγ ℜ++ℜ−=                                  (41)   

 
which on expanding gives 
 

( )( )[ ] ( )( )[ ]
( ) ( ) ( ) ( )[ ]

[ ]
10

2
1

2
1

22
1

2
1

22
1

2
1

2
1

2
1

2
1

22
1

2
1

22
1

22
1

2
1

222
1

2
1

2
1

2
1

22
1

2
1

32
1

22
1

2
1

4

Θ
















++ℜ

+−ℜ−−−−ℜ−−−

−−−+−+−−+

δδεγ
δεγδεγδ

δδδ

MNMNM

DMMNMMNMNM

DNMMMNMDMNMD

r

rrr

                    

                     
( ) ( )rIDxNNPe oh

2/1
6

222
11

32 λεγεγ ℜ++ℜ=                                      (42)  

 
Splitting this into the even and odd power terms, we get  

    

( )( )[ ][ 222
1

2
1

2
1

2
1

22
1

2
1

4
rr DNMMMNMD −−−+−+ δδ [ ]]2

1
2
1

22
1

2
1

22
1 δδεγ MNMNM ++ℜ+ 10Θ

  
 

                     
( ) ( )rIDxNNPe oh

2/1
6

222
11

32 λεγεγ ℜ++ℜ=                       (43) 

 
for the even power terms, and 
 

( )( )[ ] ( ) ( )[[ 2
1

22
1

22
1

2
1

22
1

22
1

2
1 MNMNMDMNMD rr −ℜ−−−+−− εγδδ

 

                        
( ) ( )]] 0  10

2
1

2
1

2
1

2
1

22
1 =Θ−ℜ−−− MMNM δεγδ

                            
(44)  

 
for the odd terms   
   

 
We shall solve only equation (43), and use its solution to approximate that of our problem. And, the 
solution is 
 

( ) ( ) ( )
2/1

14

2/1
14

1
2/1

16
2/1

16

2/1
16

110 2 λ
λλλλ rI

rGrI
rI

K o
o

o +=Φ
                              (45) 

  

Moreover, assuming 1010 Θ=Φ , substituting 10Φ and 10Θ  in equation (23) and solving, we have 
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



+



 ℜℵ−−=

2/1
16

2/1
16111

1111

)(

2
)()()(

λ
λ rIK

Gc
xr

rMIrMIVrw oo +   

      
64

)( 4
14

2/1
16

2/1
161

1
2/1

16

rrrI
G

λ
λ
λλ +




 










+

384

6
1614 rλλ

 

        + 



+














+−



ℜℵ
2/1

16

2/1
161

1
2/1

16

5
16

3

1

3
1

2
1

2

)(

203
2

34 λ
λλλ rrI

G
rr

KGc
rM

        

          +





















+

38464

6
1614

4
14 rr λλλ

+ 







+−

43

33
11 rMrM



 ℜℵ−

1

111 )(

M

rMxI
    

        
















+++

8016

)(
2

5
16

2
1

4
16

1

11
1

rMr

M

rMI
KGc

λλ
+

642

)( 4
14

1

11
1

2/1
16

r

M

rMrI
G

λλ +



+ 





384

6
114 rMλ

  

           +
19232

62
116

4
16 rMr λλ

+ +









+

2048384

82
11614

6
1614 rMr λλλλ

                         (46)

  

 

3 Results and Discussion 
 
Using the Maple 18 computational software, we computed

 

for constant realistic values of Pr =0.71, γ1 = 0.6, 

γ2 =0.6,  γ =0.7, Φw = 2.0, Θw =2.0, 0.8ℜ =  and varying values of 
2

1δ  =0.1, 0.3, 0.5, 1.0, 5.0; M2 = 0.1, 
0.3, 0.5, 1.0, 5.0; N2=0.1, 0.3, 0.5, 1.0, 5.0; Gr/Gc=0.1, 0.3, 0.5, 1.0, 5.0; Pe=0.1, 0.3, 0.5, 1.0, 5.0; Re=0.1, 
0.3, 0.5, 1.0; α=5, 10, 15, 20, 25 to have the results below: 
 
We formulated and solved the problem of the oscillatory flow of soil mineral salt water in a bifurcating 

green plant, as seen in sections 2. We assumed that the aspect ratio is less than or equal to one (i.e. 1≤ℜ ) 

and that the flow depends on 
2

1δ , M
2, N2, Gr/Gc, Pem, Re and α. For these, Table 1 – Table 12 show the 

computed results for the concentration and velocity factors for varied values of 
2

1δ , M
2, N2, Gr/Gc, Pem, Re 

and α. The results show that the increase in the chemical reaction rate, Hartmann number (for 0.1≤M2
≤1.0), 

Heat generation parameter, Grashof number (for 0.1≤Gr≤1.0), Peclet number and Reynolds number  
increase the concentration and velocity, and specifically, the increase in the bifurcation angle decreases the 
concentration but increases the velocity. Furthermore, it is seen that for Hartmann number M2

≥5.0 the 
velocity drops. It is noteworthy that these results are the same for the temperature factor. 
 

Table 1. Velocity-Chemical reaction rate in the mother channel 
 
r  2

1δ =0.1 2
1δ  =0.3 2

1δ =0.5 2
1δ  =1.0 2

1δ =5.0 

0.0 0.36328199I 0.3594169I 0.36832071I 0.40132766I 0.46458836I 
.02 0.35870131I 0.3528408I 0.361289835I 0.393084463I 0.457147460I 
0.4 0.34592389I 0.3340905I 0.341214725I 0.369431871I 0.435158733I 
0.6 0.32774512I 0.3059649I 0.310984651I 0.333312377I 0.399019265I 
0.8 0.30845480I 0.2726520I 0.27483158I 0.288569369I 0.347062797I 
1.0 0.29312320I 0.2389110I 0.24029550I 0.241952252I 0.270810982I 
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The chemical reaction rate depends on the chemical reaction coefficient, chemical diffusivity of the fluid, 
and the concentration gradient existing between the interacting fluids. The diffusion of the chemical at 
higher level into the lower one calls for a reaction. The chemical reaction leads to the required depletion of 
the chemicals in the system. It may be exothermic or endothermic, implying that heat is given out or 
absorbed. The resultant effect is that the fluid particles are energized. The soil mineral salt water may 
contain some substances naturally present in the soil or due to soil pollution, which may spark-off a 
chemical reaction. In particular, the increase in the rate of chemical reaction increases the concentration of 
the fluid (see Table 1).  
 

Table 2. Concentration-Hartmann number in the daughter channel 
 

r  M2=0.1 M2=0.3 M2=0.5 M2=1.0 M2=5.0 
0.0 0.85233112I 0.926268267 I 1.10760517I 1.6805132 I -25.6140530 I 
0.2 0.822471299 I 0.9341923514I 1.11453195 I 1.67164802I -25.7198738I 
0.4 0.733085598 I 0.957924783I 1.13509737 I 1.64357088I -26.1712791 I 
0.6 0.585736032 I 0.996920274I 1.16714937 I 1.59190413 I -27.3780473 I 
0.8 0.386294882 I 1.048850732I  1.20207659 I 1.50957570 I -30.0496389 I 
1.0 0.149848233 I 1.107476354 I 1.21727164 I 1.38715548 I -35.2349411 I 

 
Table 3. Velocity-Hartmann number in the mother channel 

 
r  M2=0.1 M2=0.3 M2=0.5 M2=1.0 M2=5.0 
0.0 0.26390149I 0.31144090I 0.38768449I 0.57367349I -24.622213 I 
0.2 0.25839926I 0.30519273I 0.38054619I 0.56685124I -30.783593I 
0.4 0.24231368I 0.28709883I 0.36031536 I 0.55061250I -49.171068 I 
0.6 0.21686967 I 0.25903279I 0.33034302I 0.53598775I -89.031315 I 
0.8 0.18395116I 0.22382237I 0.29550927I 0.53595580I -197.56867 I 
1.0 0.14575602I 0.18467585I 0.26101958 I 0.55758637 I -507.65644I 

 
The soil water absorbed into the plant may be saline or slightly acidic in nature; therefore, it is electrolytic 
and magnetically susceptible. The chemical content exists as ions or charges. The motion of these ions in 
the presence of the Earth magnetic field produces electric currents. In addition, the action of the magnetic 
field on the currents generates a mechanical force, the Lorentz force, which modifies the flow. The Lorentz 
force tends to fractionalize and polarize the fluid chemical contents such that they cluster around the 
magnetic field.  Similarly, the freezing of the velocity makes the fluid to be concentrated in the region. This 
may accounts for what is seen in Table 2. Even so, the analysis shows that any increase in the Hartmann 
number in the range of 0.1≤M2

≤I.0 tends to increase the velocity whereas it decreases for M2
≥5.0 (see Table 

3). In many flow problems, the Hartmann number is known to freeze up the velocity field. The re-ordering 
of the flow in the range of 0.1≤M2

≤I.0 here could be due to the oscillatory effect. 
 

Table 4. Velocity-Heat exchange parameter in the mother channel 
 

r  N2=0.1 N2 =0.3 N2 =0.5 N2 =1.0 N2 =5.0 
0.0 0.36288567I 0.364138365I 0.366835387I 0.393909984I 0.45303201I 
0.2 0.35604614I 0.357265425I 0.359881170I 0.385670013I 0.44867602I 
0.4 0.33652489I 0.337648299I 0.340029822I 0.362015323I 0.42068217I 
0.6 0.30716323I 0.308139264I 0.310157161I 0.325859782I 0.38075685I 
0.8 0.27216121I 0.272948694I 0.274492647I 0.281025051I 0.32311451I 
1.0 0.2361398I 0.23669126I 0.23762501 I 0.23800023 I 0.23861976 I 

 
Furthermore, in heat-involving systems, heat is either generated or absorbed. In whichever way, the 
existence of the heat looses the fluid particles from the grip of viscosity and grants them buoyancy. The 
energization of the fluid particles tends to increase the velocity structures, as seen in Table 4.    
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                       Table 5. Concentration-Grashof number in the daughter channel 
 

r  Gr =0.1 Gr =0.3 Gr =0.5 Gr =1.0 
0.0 0.595079506I 0.856698596I 1.04054112I 12.4683188 I 
0.2 0.599892358I 0.861351285I 1.04426225I 12.3971754 I 
0.4 0.614340825 I 0.875306569I 1.05538252I 12.1826592 I 
0.6 0.638390290 I 0.898371555I 1.07331107I 11.8206646 I 
0.8 0.671768567 I 0.929609604I 1.09552431I 11.3035244 I 
1.0 0.713644151I 0.96641762 I 1.11525794I 10.6182726I 

                       
Table 6. Velocity-Grashof number in the mother channel 

 
r  Gr =0.1 Gr =0.3 Gr =0.5 Gr =1.0 
0.0 0.071714445I 0.21835365I 0.36595813I 0.73471924I 
0.2 0.070395046I 0.21425584I 0.35903188I 0.72071264I 
0.4 0.066634591I 0.20256367I 0.33926129I 0.68071681I 
0.6 0.061003314I 0.18499366I 0.30951454I 0.62047294I 
0.8 0.054341729I 0.16407779I 0.27401542I 0.54842278I 
1.0 0.047464895I 0.14252222I 0.2373632 I 0.47391178 I 

 
Similarly, the increase in the concentration/thermal gradient, which leads to an increase in the free 
convection or buoyancy force, may have resulted from the increase in the external/environmental 
temperature. The buoyancy force or Grashof number reduces the viscosity of the fluid and energizes its 
flow velocity. The results also show that the Grashof number in the range of 0.1≤Gc≤I.0 tends to increase 
the concentration and velocity (see Table 5 and 6). These results quite agree with [4,10,13]. 
                

Table 7. Concentration-Peclet number in the daughter channel 
 

r  Pe=0.01 Pe =0.05 Pe =0.1  Pe=0.5 Pe=1.0 
0.0 1.0405369 I  1.04054027I 1.0405445 I 1.0405785 I 1.0406211I 
0.2 1.0442580 I 1.0442614 I 1.0442657 I 1.0442998 I 1.0443425 I 
0.4 1.0553782 I 1.0553817 I 1.0553860 I 1.0554205 I 1.0554637 I 
0.6 1.0733067I 1.0733102 I 1.0733146 I 1.0733497 I 1.0733937I 
0.8 1.0955198I 1.0955234I 1.0955279 I 1.0955638 I 1.0956087 I 
1.0 1.1152534 I 1.1152570 I 1.1152616 I 1.1152982 I 1.1153439 I 

 
Table 8. Velocity-Peclet number in the daughter channel 

 
r  Pe=0.01 Pe =0.05 Pe =0.1  Pe=0.5 Pe=1.0 
0.0 92.876895 I 92.8772251 I 92.8776383 I 92.8809434I 92.8850749 I 
0.2 93.065874I 93.0662053I 93.0666193 I 93.0699311 I 93.0740709 I 
0.4 93.631215 I 93.6315646I 93.6319811 I 93.6353130 I 93.6394779 I 
0.6 94.578946 I 94.5792828 I 94.5797035 I 94.5830690 I 94.5872760 I 
0.8 95.949220 I 95.9495616 I 95.9499884 I 95.9534026 I 95.9576704 I 
1.0 97.862164 I 97.8625123I 97.8629476I 97.8664298 I 97.8707825 I 

 
Additionally, Peclet number depends on the size of the kinetic viscosity and diffusivities of the fluid. The 
analysis shows that the higher it is the better the flow (see Tables 7 and 8). Especially for the velocity, the 
results perfectly agree with [13]). 
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Table 9. Concentration-Reynolds number in the daughter channel 
 

r  Re=0.1 Re=0.3 Re =0.5 Re =1.0 Re =5.0 
0.0 0.34684704 I 1.04054112I 1.73423519 I 3.46847039 I 17.3423519 I 
0.2 0.34808741 I 1.04426224 I 1.74043707 I 3.48087414 I 17.4043707 I 
0.4 0.35179417I 1.05538252I 1.75997087I 3.51794174I 17.5897087I 
0.6 0.35777035I 1.07331106I 1.78885177I 3.57770353I 17.8885177I 
0.8 0.36517477I 1.09552430I 1.82587383I 3.65174766I 18.2587383I 
1.0 0.37175264I 1.11535793I 1.85876321I 3.71752643I 18.5876322I 

 
Table 10. Velocity-Reynolds number in the daughter channel 

 
r  Re=0.1 Re=0.3 Re =0.5 Re =1.0 
0.0 309.5910260I 928.77307801I 1547.955130I 3095.910260I 
0.2 310.2209603I 930.66288090I 1551.104802I 3102.209603I 
0.4 312.1054933I 936.31647990I 1560.527466I 3121.054933I 
0.6 315.2645566I 945.79366980I 1576.322783I 3152.645566I 
0.8 319.8321566I 959.49646980I 1599.160783I 3198.321566I 
1.0 326.2086648I 978.62599440I 1631.043324I 3262.086648I 

 
Moreover, the flow in the mother channel is laminar and Poiseuille. Therefore, its Reynolds number is 
moderate in the range of the flow. However, towards the nodal point/bifurcation or entry into the daughter 
channel, the Reynolds number, hence the momentum rises due to the change in the geometrical 
configuration. This increase positively affects the concentration and velocity structure (Tables 9 and 10). 
For the velocity, result is in good agreement with [4,13]). 
 

Table 11. Concentration-bifurcation angles in the daughter channel 
 

r  α =5 α =10 α  =15 α  =20 α =25 
0.0 0.3003087I -917.6626I -1.71523 E+5I -7.08514 E+6I -1.2835 E+8I 
0.2 0.2957192I -927.0039I -1.72158 E+5I -7.10721 E+6I -1.29816 E+8I 
0.4 0.2819042I -939.0122I -1.74064 E+5I -7.17342 E+6I -1.29816 E+8I 
0.6 0.2587052I -965.6408I -1.77239 E+5I -7.28375 E+6I -1.31648 E+8I 
0.8 0.2257918I -1002.812I -1.81679 E+5I -7.43815 E+6I -1.34213 E+8I 
1.0 0.1825630I -1050.420I -1.87381 E+5I -7.63658 E+6I -1.37509 E+8I 

 
Table 12. Velocity-bifurcation angles in the daughter channel 

 
r  α =5 α =10 α  =15 α  =20 α =25 
0.0 6.191821I 5662.903014I 1.192474 E+6I 6.788532E+7I 1.81849 E+9I 
0.2 6.204419I 5674.77439I 1.194889 E+6I 6.802169E+7I 1.82214E+9I 
0.4 6.242110I 5710.20318I 1.202124 E+6I 6.843059E+7I 1.83307 E+9I 
0.6 6.305291I 5768.85326I 1.2141593E+6I 6.911165E+7I 1.85128E+9I 
0.8 6.524173I 5850.32830I 1.2309725 E+6 I 7.00644 E+7 I 1.87676 E+9 I 
1.0 6.524173I 5954.19682 I 1.252536 E+6 I 7.12883E+7 I 1.90952 E+9 I 

 
Similarly, Table 11 shows that the increase in the bifurcation angle decreases the quantity of soil mineral 
salt water being transported.  
 
Furthermore, the increase in the bifurcation angle narrows down the diameter of the daughter channel. This 
tends to increase in the inlet pressure, which in turn increases the flow velocity. This may account for what 
is seen in Table 12. This result agrees with those of [2,4].  
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Usually, oscillatory characteristics produce several flow patterns such as turbulent zones, and vortices, 
which lead to loss of energy for the flow and destroy the axial velocity. These tend to weaken or delay the 
transport of materials. Therefore, the increase in the flow variables has some attendant implications on the 
growth and yield of the plant (crop). In particular, studies have revealed that the decrease in the velocity due 
to the magnetic field reduces the rate at which soil mineral salt water is transported from the soil via the 
roots, through the trunk and branches to the leaves. The variation in the saline or acidic levels of the soil, 
hence the magnetic field tends to explain why some crops do well in some regions than in others. The 
analyses of this model show that the same magnetic field (in the range of 0.1≤M2

≤1.0), which reduces the 
velocity in a normal/non-oscillatory flow enhances the transport velocity in the oscillating situation.  Since 
both non-oscillating and oscillating flows take place at the same time in the green plant, it suffices to say 
that the effect of magnetic field on the velocity structure in the oscillatory flow tends to cushion the adverse 
effects of magnetic field in the non-oscillatory flow. Two, the increase in the concentration of the fluid in 
the plant increases the inflow of the soil mineral water, which is usually at lower osmotic pressure into the 
plant. The continual inflow and exhaustion of the soil mineral salt water in the plant helps in making 
nutrients available to it, and this in turn enhances its growth and yield.  
 

4 Conclusion    
 
This study presents an analytic model of the oscillatory flow of soil mineral salt water in a bifurcating green 
plant. The study is focused on the effects of the chemical reaction rate, nature of the soil (magnetic 
susceptibility), heat generation/absorption parameter, Grashof number, Peclet number, and Reynolds 
number and bifurcation angles on the concentration and velocity factors. The results show that the increase 
in the chemical reaction rate, Hartmann number (for 0.1≤M2

≤1.0), Heat generation parameter, Grashof 
number for 0.1≤Gr≤1.0), Peclet number, Reynnolds number increase the concentration and velocity, and 
specifically, the increase in the bifurcation angle decreases the concentration but increases the velocity. 
Furthermore, it is seen that for Hartmann number M2≥5.0 the velocity drops. The increase in the flow 
variables has some resultant implications on the growth and yield of the plant. In particular, since the 
normal/non-oscillatory and oscillatory flows take place at the same time in the plant, the increase in the 
velocity due to the increase in the magnetic field in the range of 0.1≤M2

≤1.0 in the oscillatory flow tends to 
cushion the adverse effects of magnetic field in the non-oscillatory flow. Furthermore, the increase in the 
concentration of the fluid in the plant enhances the inflow of the soil mineral salt into it, and this in turn 
enhances its growth and yield.  
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