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Abstract
This paper deals with dynamics of the solutions to the system of second order nonlinear difference
equations

xn+1 =
xn

A+ ynyn−1
, yn+1 =

yn
B + xnxn−1

, n = 0, 1, · · · ,

where A ∈ (0,∞), x−i ∈ (0,∞), y−i ∈ (0,∞), i = 0, 1. Moreover we use the known results to
determine the rate of convergence of the solutions of this system. Finally, we give some numerical
examples to justify our results.
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1 Introduction
Difference equations or discrete dynamical systems are diverse field which impacts almost every
branch of pure and applied mathematics. One of the reasons is a necessity for some techniques
which can be used in investigating equations arising in mathematical models describing real life
situations in population biology, economic, probability theory, genetics psychology, etc. The theory
of difference equations occupies a central position in applicable analysis. There is no doubt that the
theory of difference equations will continue to play an important role in mathematics as a whole.
Rational difference equations of order greater than one are of paramount importance in applications.
Such equations also appear naturally as discrete analogues and as numerical solutions of differential
and delay differential equations. It is very interesting to investigate the behavior of solutions to
rational difference equations and to discuss the local asymptotic stability of their equilibrium points.
Recently there has been published quite a lot of works concerning the behavior of positive solutions
of systems of difference equations [1-10]. These results are not only valuable in their own right, but
also they can provide insight into their differential counterparts.

Kurbanli [3] studied a three-dimensional system of rational difference equations

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1

xnyn−1 − 1
, zn+1 =

zn−1

ynzn−1 − 1
,

where the initial conditions are arbitrary real numbers.

Cinar et al. [4] have obtained the positive solution of the difference equation system

xn+1 =
m

y n

, yn+1 =
pyn

xn−1yn−1
.

Cinar [5] has obtained the positive solution of the difference equation system

xn+1 =
1

y n

, yn+1 =
yn

xn−1yn−1
.

Clark and Kulenovic [6] investigated the system of rational difference equations

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

, n = 0, 1, · · · ,

where a, b, c, d ∈ (0,∞) and the initial conditions x0 and y0 are arbitrary nonnegative numbers.

Zhang, Yang and Liu [7] investigated the global behavior for a system of the following third order
nonlinear difference equations.

xn+1 =
xn−2

B + yn−2yn−1yn
, yn+1 =

yn−2

A+ xn−2xn−1xn
,

where A,B ∈ (0,∞), and initial values x−i, y−i ∈ (0,∞), i = 0, 1, 2.

Ibrahim [9] has obtained the positive solution of the difference equation system in the modeling
competitive populations.

xn+1 =
xn−1

xn−1yn + α
, yn+1 =

yn−1

yn−1xn + β
.

Din et al. [10] studied the global behavior of positive solution to the fourth-order rational difference
equations

xn+1 =
αxn−3

β + γynyn−1yn−2yn−3
, yn+1 =

α1yn−3

β1 + γ1xnxn−1xn−2xn−3
.
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where the parameters α, β, γ, α1, β1, γ1 and the initial conditions x−i, y−i, i = 0, 1, 2, 3, are positive
real numbers.

Although difference equations are sometimes very simple in their forms, they are extremely difficult
to understand thoroughly the behavior of their solutions. In [11], Kocic and Ladas have studied
global behavior of nonlinear difference equations of higher order. Similar nonlinear systems of
difference equations were investigated (see [12-20]).

Our aim in this paper is to investigate the solutions, stability character and asymptotic behavior of
the system of difference equations

xn+1 =
xn

A+ ynyn−1
, yn+1 =

yn
B + xnxn−1

, n = 0, 1, · · · , (1.1)

where A,B ∈ (0,∞) and initial conditions xi, yi ∈ (0,∞), i = −1, 0.

2 Main Results
Let Ix, Iy be closed intervals of real numbers and f : I2x × I2y → Ix, g : I2x × I2y → Iy be continuously
differentiable functions. Then for every initial conditions (xi, yi) ∈ Ix × Iy(i = −1, 0), the system
of difference equations 

xn+1 = f(xn, xn−1, yn, yn−1),

yn+1 = g(xn, xn−1, yn, yn−1),
n = 0, 1, 2, · · · , (2.1)

has a unique solution {(xn, yn)}∞n=−1. A point (x̄, ȳ) ∈ Ix×Iy is called an equilibrium point of (2.1)
if x̄ = f(x̄, x̄, ȳ, ȳ), ȳ = g(x̄, x̄, ȳ, ȳ), i. e., (xn, yn) = (x̄, ȳ) for all n ≥ 0.

Definition 2.1 Assume that (x̄, ȳ) be a fixed point of (2.1). Then

(i) (x̄, ȳ) is said to be stable relative to Ix × Iy if for every ε > 0, there exists δ > 0 such that for
any initial conditions (xi, yi) ∈ Ix × Iy(i = −1, 0), with

∑0
i=−1 |xi − x̄| < δ,

∑0
i=−1 |yi − ȳ| < δ,

implies |xn − x̄| < ε, |yn − ȳ| < ε.
(ii) (x̄, ȳ) is called an attractor relative to Ix×Iy if for all (xi, yi) ∈ Ix×Iy(i = −1, 0), limn→∞ xn =
x̄, limn→∞ yn = ȳ.
(iii) (x̄, ȳ) is called asymptotically stable relative to Ix × Iy if it is stable and an attractor.
(iv) Unstable if it is not stable.

Theorem 2.1.[11] Assume that X(n + 1) = F (X(n)), n = 0, 1, · · · , is a system of difference
equations, and X is the equilibrium point of this system i.e., F (X) = X. If all eigenvalues of
the Jacobian matrix JF , evaluated at X lie inside the open unit disk |λ| < 1, then X is locally
asymptotically stable. If one of them has modulus greater than one then X is unstable.

Clearly, system (1.1) has always trivial equilibrium (0, 0). If 0 < A < 1, 0 < B < 1, system (1.1)
has a unique positive equilibrium point (

√
1−B,

√
1−A).

Theorem 2.2. Consider system (1.1), then the following statements are true:

(i) If 0 < A < 1, 0 < B < 1, then the trivial equilibrium point (0, 0) is unstable.
(ii)If A > 1, B > 1, then the trivial equilibrium point (0, 0) is locally asymptotically stable.

Proof. We can obtain easily the linearized system of (1.1) about the positive equilibrium (0, 0) is

Φn+1 = BΦn (2.2)
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where

Φn =


xn

xn−1

yn
yn−1

 , B = ∂F
∂Xn

|(0,0) =


1
A

0 0 0
1 0 0 0
0 0 1

B
0

0 0 1 0


The characteristic equation of (2.2) is

λ2(λ− 1

A
)(λ− 1

B
) = 0 (2.3)

(i) If 0 < A < 1, 0 < B < 1, This shows that two roots of characteristic equation lie outside unit
disk. So the trivial equilibrium point (0, 0) is a repeler, i.e. it is unstable.
(ii) If A > 1, B > 1, The all roots of characteristic equation lie inside unit disk. So the trivial
equilibrium point (0, 0) is a source, i.e. it is locally asymptotically stable.

Theorem 2.3 Suppose that A > 1, B > 1 hold, then the trivial equilibrium point (0, 0) is globally
asymptotically stable.

Proof. For A > 1, B > 1, from (ii) of Theorem 2.2, the equilibrium point (0, 0) is locally
asymptotically stable. From (1.1), it is easy to see every positive solution (xn, yn) is bounded.
i.e. 0 < xn < x0, 0 < yn < y0. Now it is sufficient to prove that the sequences {xn} and {yn} are
decreasing. From (1.1), we have

xn+1

xn
=

1

A+ ynyn−1
≤ 1

A
< 1,

yn+1

yn
=

1

B + xnxn−1
≤ 1

B
< 1.

This implies that the sequences {xn} and {yn} are decreasing. Hence limn→∞ xn = 0, limn→∞ yn =
0. Therefore the trivial equilibrium point (0, 0) is globally asymptotically stable.

Theorem 2.4 Assume that 0 < A < 1, 0 < B < 1. Then the positive equilibrium point (x̄, ȳ) =
(
√
1−B,

√
1−A) is locally unstable.

Proof. We can obtain easily the linearized system of (1.1) about the positive equilibrium (x̄, ȳ) is

Φn+1 = GΦn (2.4)

where Φn = (xn, xn−1, yn, yn−1)
T ,

G =
∂F

∂Xn
|(x̄,ȳ) =


1
A

0 −x̄ȳ −x̄ȳ
1 0 0 0

−x̄ȳ −x̄ȳ 1
B

0
0 0 1 0


Let λ1, λ2, λ3, λ4 denote the 4 eigenvalues of Matrix G. Let D = diag(d1, d2, d3, d4), di ̸= 0(i =
1, 2, 3, 4) be a diagonal matrix,

Clearly D is invertible. Computing DGD−1, we obtained

DGD−1 =


1
A

0 − d1
d3
x̄ȳ − d1

d4
x̄ȳ

d2
d1

0 0 0

− d3
d1
x̄ȳ − d3

d2
x̄ȳ 1

B
0

0 0 d4
d3

0


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It is well known that G has the same eigenvalues as DGD−1, we obtain that

max
1≤k≤4

|λk| = ∥DGD−1∥

= max

{
d2d

−1
1 , d4d

−1
3 ,

1

A
+

d1
d3

x̄ȳ +
d1
d4

x̄ȳ,

1

B
+

d3
d1

x̄ȳ +
d3
d2

x̄ȳ

}
> 1

It follows from Theorem 2.1 [11] that the positive equilibrium points (x̄, ȳ) is locally unstable.

3 Rate of Convergence
In this section we will determine the rate of convergence of a solution that converges to the
equilibrium point (0, 0) of the system (1.1). The following result gives the rate of convergence
of solution of a system of difference equations

Xn+1 = [P +Q(n)]Xn (3.1)

where Xn is a four dimensional vector, P ∈ C4×4 is a constant matrix, Q : Z+ → C4×4 is a matrix
function satisfying

∥Q(n)∥ → 0,when n → ∞. (3.2)

where ∥ · ∥ denotes any matrix norm which is associated with the vector norm.

Theorem 3.1.[21] Assume that condition (3.2) hold, if Xn is a solution of (3.1), then either Xn = 0
for all large n or

ρ = lim
n→∞

n
√

∥Xn∥ (3.3)

or
ρ = lim

n→∞

∥Xn+1∥
∥Xn∥

(3.4)

exists and is equal to the moduls of one the eigenvalues of the matrix P .

Assume that limn→∞ xn = x̄, limn→∞ yn = ȳ, we will find a system of limiting equations for the
system (1.1). The error terms are given as

xn+1 − x̄ =
∑1

i=0 Pi(xn−i − x̄) +
∑1

i=0 Qi(yn−i − ȳ)

yn+1 − ȳ =
∑1

i=0 Ri(xn−i − x̄) +
∑1

i=0 Si(yn−i − ȳ)

Set e1n = xn − x̄, e2n = yn − ȳ, therefore it follows that
e1n+1 =

∑1
i=0 Pie

1
n−i +

∑1
i=0 Qie

2
n−i

e2n+1 =
∑1

i=0 Rie
1
n−i +

∑1
i=0 Sie

2
n−i

where
P0 =

1

A+ ynyn−1
, P1 = 0, Q0 = − xnyn−1

(A+ ynyn−1)2
, Q1 = − xnyn

(A+ ynyn−1)2
.

R0 = − xn−1yn
(B + xnxn−1)2

, R1 = − xnyn
(B + xnxn−1)2

, S0 =
1

B + xnxn−1
, S1 = 0.

Now it is clear that

lim
n→∞

P0 =
1

A
, lim
n→∞

Q0 = lim
n→∞

Q1 = 0, lim
n→∞

R0 = lim
n→∞

R1 = 0, lim
n→∞

S0 =
1

B
.
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Hence, the limiting system of error terms at (0, 0) can be written as

En+1 = GEn (3.5)

where En = (e1n, e
1
n−1, e

2
n, e

2
n−1)

T , and

G = JF (0, 0) = (dij)4×4 =


1
A

0 0 0
1 0 0 0
0 0 1

B
0

0 0 1 0


Using Theorem 3.1, we have the following result

Theorem 3.2. Assume that A > 1, B > 1, and {(xn, yn)} be a positive solution of the system
(1.1). Then, the error vector En of every solution of (1.1) satisfies both of the following asymptotic
relations

lim
n→∞

n
√

∥En∥ = |λJF (0, 0)|, lim
n→∞

∥En+1∥
∥En∥

= |λJF (0, 0)|.

where λJF (0, 0) is equal to the moduls of one the eigenvalues of the Jacobian matrix evaluted at the
equilibrium (0, 0).

4 Numerical Examples
In order to illustrate the results of the previous sections and to support our theoretical discussions,
we consider some interesting numerical examples in this section.

Example 4.1. Consider the system (1.1) with initial conditions x−1 = 0.8, x0 = 1.2, y−1 = 1.8, y0 =
2.2, Moreover, choosing the parameters A = 1.7, B = 1.5. Then system (1.1) can be written as

xn+1 =
xn

1.7 + ynyn−1
, yn+1 =

yn
1.5 + xnxn−1

(4.1)

The plot of system (4.1) is shown in Fig. 1.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

n

x n &
y n

x
n

y
n

Fig. 1. The plot of system (4.1)

Example 4.2. Consider the system (1.1) with initial conditions x−1 = 4.8, x0 = 4.6, y−1 = 5.8, y0 =
5.2, Moreover, choosing the parameters A = 0.7, B = 0.8. Then system (1.1) can be written as

xn+1 =
xn

0.7 + ynyn−1
, yn+1 =

yn
0.8 + xnxn−1

(4.2)

The plot of system (4.2) is shown in Fig. 2.
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Fig. 2. The plot of system (4.2)

5 Conclusions
In this paper, the dynamical behavior of second-order discrete system is studied. It conclude that:
(i) the positive equilibrium point (

√
1−B,

√
1−A) is locally unstable if 0 < A < 1, 0 < B < 1. (ii)

the trivial equilibrium point (0, 0) is globally asymptotically stable if A > 1, B > 1. Some numerical
examples are provided to support theoretical results.
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