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Abstract 
 

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was 
used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an 
endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic 
reproduction number �� is obtained. If �� > 1, then the measles will spread and persist in the population. 
If �� < 1, then the disease will die out.  The disease was locally asymptotically stable if �� < 1 and 
unstable if  �� > 1. ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE 
EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. 
Furthermore, the endemic equilibrium was locally asymptotically stable if �� > 1 , under certain 
conditions. Numerical simulations were conducted to confirm our analytic results. 
Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the 
recovery rate and reducing the infectious rate can be useful in controlling and combating the measles. 
 

 
Keywords: Reproduction number; measles transmission; equilibrium states; stability analysis. 
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1 Introduction    
 
Measles disease, also called rubeola, is a very highly contagious infection caused by a virus.  It is spread 
from person to person. The disease has a high attack rate of over 90% among susceptible persons. The 
measles virus is a paramyxovirus, genus Morbillivirus. Even though an effective vaccine is available and 
widely used, measles continues to occur even in developed countries [1]. Children under five years are most 
at risk [2].  According to the World Health Organization [3], the first sign of measles is usually a high fever, 
which begins about 10 to 12 days after exposure to the virus, and lasts 4 to 7 days. A runny nose, a cough, 
red and watery eyes, and small white spots inside the cheeks can develop in the initial stage. After several 
days, a rash erupts, usually on the face and upper neck. Over about three days, the rash spreads, eventually 
reaching the hands and feet. The rash lasts for 5 to 6 days and then fades. On average, the rash occurs 14 
days after exposure to the virus (within a range of 7 to 18 days). Complications associated with the disease 
causes most measles-related deaths. Serious complications are more common in children under the age of 5, 
or adults over the age of 30. The most serious complications include blindness, encephalitis (an infection 
that causes brain swelling), severe diarrhoea and related dehydration, ear infections, or severe respiratory 
infections such as pneumonia. Severe measles is more likely among poorly nourished young children, 
especially those with insufficient vitamin A, or whose immune systems have been weakened by HIV/AIDS 
or other diseases. Bolarin [4], studied the dynamical analysis of a new model for measles infection. His 
study used Susceptible-Exposed-Infectious-Recovery (SEIR) model modified by adding vaccinated 
compartment. His model determined the required vaccination coverage and dosage that will guarantee the 
eradication of measles disease within a population [5].  Momoh et al. [6], developed a mathematical model 
for the control of measles epidemiology. They used the SEIR model to determine the impact of exposed 
individuals at latent period through the stability analysis and numerical simulation.  Yuan and Allen [7], 
worked out a deterministic mathematical model that deals with the transmission dynamics of measles 
disease. Their results indicate that vaccination plays an important role in the control strategy against the 
transmission of this measles disease. Here, some important terminologies that are frequently used in this 
work are now introduced. Compartmentalize refers to a group of persons with similar status or with respect 
to the same disease. A person is said to be susceptible if he is not yet infected by the disease but likely to get 
the disease in the future. A person is said to be exposed to a disease when the virus enters into the person's 
body. At this stage, the effects of the disease cannot be identified with the person, because the effects are in a 
sleeping state. A person is said to be infected if it has the disease in its body and is able to transfer the 
disease to other susceptible persons [1,8,9]. Transmission of any disease depends on the infectivity of the 
agent, the duration of infectiousness, rates of contact, and the susceptibility of contacts [10].  The rest of this 
paper is organised such that section 2 presents the model description, assumptions and the basic reproduction 
number. We consider the Stability analysis of the disease-free as well as the endemic equilibria in section 3. 
Section 4 is devoted to the numerical simulations. We performed the sensitivity analysis of the basic 
reproduction number in section 5. In section 6, the conclusion is presented. 
 

2 Mathematical Model 
 
2.1 Model description and basic reproduction number 
 
In this section, we study a model for the spread of measles in a human population. Based on epidemiological 
status, the population is divided into five classes: Immunity (� ), Susceptible(�), Infected (�), Infectious (�) 
and Recovered (�). All recruitments are into the immunity and susceptible classes and they occur at a 
constant rate �. We assume that a rate � of the immunity class and a birth rate � move to the susceptible 
class. When susceptible individuals come into contact with infected humans, a class of exposed individuals 

is generated at rate �. The constant rate for non-disease related death is � and 
�

�
 is the average lifetime. The 

population of the exposed class decreases at a rate of �  to the infective class. While the recovery class 
increases by the rate of �, the infective class decreases by a rate of � to the recovery class. This generates a 
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class �  of individuals who have complete protection against the disease. The class �  of recovered 
individuals is reduced through a natural death rate �. 
 
The diagram for the deterministic model is shown below: 
 

 
 

Fig. 1. Flowchart for measles transmission 
 

2.2 Model assumptions 
 

1) The infection confers permanent immunity. 
2) Susceptible people can give passive immunity eg. Mother can give passive immunity to the newborn 
3) The total population is not constant. 
4) We assume that those infected individuals are not infectious and thus not capable of transmission of 

measles. 
 
The model is given by the system of ordinary differential equations as:   
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

��

��
= �(� − �)− �� − ��                                                       

��

��
= �� + �� − �

��

�
− ��                               

��

��
= �

��

�
− (� + �)�                                         

                          

��

��
= �� − (� + �)�           

��

��
= ��− ��                    

                                                             

                                                            

�                                                     (2.1) 

 
with the initial conditions   � (0)≥ 0,�(0)> 0,�(0)≥ 0,�(0)≥ 0 and  �(0)≥ 0. 
 

Table 1. Description of parameter 
 

Parameter                  Parameter description 
b 
� 
� 
� 
� 
� 

                 Birth rate 
                 Infection rate (effective infection rate) 
                 Passive immunity rate 
                 Recovery rate  
                 Natural death rate 
                 Progression rate from � to �. 

 

Denote the total population of the model (2.1) by �(�) 
 

�(�)= � (�)+ �(�)+ �(�)+ �(�)+ �(�)                                                                                 (2.2) 
 

We non- dimensionalised the system (2.1) by letting  
 

� =
�

�
,�=

�

�
,� =

�

�
,�=

�

�
,�=

�

�
  ���  � = � − �  as the difference between birth and death rates. 
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By eliminating � from the system (2.1) it becomes 
                           

⎩
⎪⎪
⎨

⎪⎪
⎧   

��

��
= (� + �)(�+ �+ �)− � �                                                                                                   

                              
��

��
= �(1 − � − �− �− �)�− (� + � + �)�                                                                   

��

��
= ��− (� + � + �)�                                              

��

��
= ��− (� + �)�                                                      

                                                             

                                                            

�        (2.3) 

 
Thus the feasible region of the system (2.3) given by: 
 
Γ = {(� ,�,�,�):� > 0,� ≥ 0,�≥ 0,� ≥ 0,� + �+ �+ � ≤ 1} is positively invariant.     
 
Next, we calculate  the basic reproduction number of the model (2.3) by applying the next generation matrix 
technique  [11,12,13].  
 
It can easily be seen that from the system (2.3)  the disease-free equilibrium is �� = (� ,0,0,0).  
 
Let � = (� ,�,�,�)� , then system (2.3) can be written as  
 

� ′ = �(�)− �(�), 
 
Such that: 
 

�(�)= ��
(1 − � − �− �− �)�

0
�    and    �(�)= �

(� + � + �)�
(� + � + �)�− ��

� 

 
The Jacobian matrices of  �(�) and �(�) at the disease-free equilibrium, �� are respectively 
 

� = ��(��)= �
0 �
0 0

� , � = ��(��)= �
(� + � + �) 0

−� (� + � + �)
� 

 
The basic reproduction number, ��, is therefore given by the spectral radius of  ���� that is  
  

���� = �
0 �
0 0

��

�

(�����)
0

�

(�����)(�����)

�

(�����)

�= �
βδ

(�����)(�����)

β

(�����)

0 0
� 

 
Then  
 

�� = �(����)=
βδ

(�����)(�����)
                                                                                               (2.4) 

 

3 Model Analysis 
 
3.1 Disease-free equilibrium  
 
In this subsection, we investigate the local geometrical properties of the disease-free equilibrium �� =
(� ,0,0,0) by considering the linearised system of ordinary differential equations (2.4), by taking the 
Jacobian matrix, we obtain 
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�(� ,�,�,�)= �

−� � + � � + �                                    � + �

−�� −��− (� + � + �) �(1 − � − �− �)− 2�� −��

0
0

�
0

−(� + � + �)
�

  
              0
−(� + �)

�                         (3.1) 

 
The local stability of the equilibrium may be determined from the Jacobian matrix (3.1). This implies that 
the Jacobian matrix for the disease-free equilibrium is given by 
 

�(��)= �

−� � + � � + �        � + �

0 −(� + � + �) �(1 − � )          0

0
0

�
0

−(� + � + �)
�

  
0

−(� + �)

�                                                      (3.2) 

 
To find the eigenvalues of the matrix (3.2) use  
 

|�(��)− ��|= �

−�− � � + �          � + �               � + �

0 −(� + � + �)− � �(1 − � )                 0

0
0

�
0

−(� + � + �)− �
�

  
0

−(� + �)− �

�= 0         (3.3)               

 
The eigenvalues are given by: 
 

�(�)= �� + ���
� + ���

� + ���+ �� = 0                                                                                  (3.4) 
 
Where  
 

 �� = ε + δ + 3μ + 3q+ γ > 0 
 �� = 2��+ 2��+ ��+ (� + �)[(� + � + �)+ (� + � + �)]+ (� + � + �)   
          [�− (� + � + �)]+ ��(1 − � )> 0, when �> (� + � + �), 

�� = (� + � + �)[ε�(� + � + �)+ ε(� + �)+ (� + � + �)(� + �)�+ ε((� + � + �)(� + �)+  

         εδβ(1 − m )+ δ(� + �)β(1 − m )> 0, 
�� = �(μ + q)[(� + � + �)(� + � + �)+ ��(1 − � )]> 0, 

 
Considering equation (3.4) we have  
 

 �

�� �� 0   0
1 �� �� 0

0
0

��
1

��
��

0
��

�> 0 

 
Using the Routh-Hurwitz criterion [12,13], it can be seen that all the eigenvalues of the characteristic 
equation (3.4) have negative real part if and only if: 
 

�� > 0,�� > 0,�� > 0,�� > 0 ,������ − ��
� − ��

��� > 0                                                    (3.5) 
 
Theorem 1: The disease-free equilibrium �� is locally asymptotically stable if and only if conditions (3.5) 
are satisfied.  
 

3.2 Existence of endemic equilibrium 
 
In this subsection, we consider a situation in which all the disease states coexist in the equilibrium. We 
denote �∗ = (� ∗,�∗,�∗,�∗) as the endemic equilibrium of the system (2.4). 
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We also obtain  
 

� ∗ =
[(�����)(���)��(���)���]�∗

��
  , �∗ = ���

∗ , �∗ =
�

���
�∗ and  �∗ =

�����

�(����������)
 

 

Where �� =
[(�����)(���)��(���)���]

��
 , �� =

(�����)

�
 , �� =

�

���
  , �= (� + � + �) 

 

from system of ODE’s (2.4) we linearized the same system to obtained: 
 

�(�∗)= �

���   ���       ���          ���
���   ���     ���          ���
���
���

    
���
���

      
���        
���        

���
���

�                                                                                  (3.6) 

 

|�(�∗)− ��|= �

��� − � ��� ���          ���
��� ��� − � ���          ���
���
���

���
���

��� − �
���

���
��� − �

�= 0                                                      (3.7) 

 
Where  
 

��� = −� ,��� =  � + �, ��� =  � + �, ��� =  � + � , ��� = −��∗, ��� = −��∗ − (� + � + �),  
��� = �(1 − � − �− �)− 2��∗, ��� = −��∗,��� = 0, ��� = �,��� = −(� + � + �),��� = 0 
��� = 0, ��� = 0,  ��� = �, ��� = −(� + �) 

 

We determine the local stability of the positive equilibrium  �∗, then the characteristic equation  is given by:  
 

�� + ���
� + ���

� + ���+ �� = 0                                                                                 (3.8) 
    
Such that  
 

�� = ��� − ��� − ��� − ��� , 
�� = ������ + ������ + ������ − ������ − ������ − ������ − ������ − ������ − ������ , 
�� = ��������� + ��������� + ��������� + ��������� + ��������� + ��������� +  ��������� + 
          ��������� − ��������� − ��������� + ��������� − ��������� − ��������� 
�� = ������������ + ������������ + ������������ − ������������ − ������������ 
        −������������ − ������������ − ������������, 

 
by using the Routh-Hurwitz criterion [11,12,13], we have: 
 

�� = �
�� ��
�� ��

�> 0 , �� = �
�� �� 0
�� �� ��
0 �� ��

�> 0 

���� > ��,  ������ > ����� + ��� ,                                                                               (3.9) 
  
Then the system (2.4) shows local asymptotical stability at �∗ when �� > 1, which guarantees the existence 
of �∗ and conditions (3.9) are satisfied so, we arrive at the following results. 
  
Theorem 2: The endemic equilibrium �∗ of the system (2.4) is locally asymptotically stable if �� > 1 and 
conditions (3.9) are satisfied  
 

3.3 Global stability for the disease-free equilibrium 
 
In this subsection, we proof the global stability of the disease-free equilibrium ��. 
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Theorem 3: If �� < 1, then the disease-free equilibrium is globally asymptotically stable 
 
Proof: 
 
Consider the Lyapunov function 
 

 � = ��+ (� + � + �)� 

� ′ = ��′ + (� + � + �)̇ �′ 
= �[�(1 − � − �− �− �)�− (� + � + �)�]− (� + � + �)(� + � + �)� 

≤ (� + � + �)(� + � + �)�
�[�(1 − � − �− �− �)

(� + � + �)(� + � + �
− 1�� 

≤ (� + � + �)(� + � + �)[��(1 − � − �− �− �)− 1]�≤ 0 
 
Hence, � ′ = 0 if and only if  � = 0, the largest compact invariant set in {(� ,�,�,�)|� ′ = 0}, when �� ≤ 1 is 
the singleton set ��. Lasalle Invariance principal [14,15,16] implies that �� is globally asymptotically stable 
in the region Γ. 
 

4 Numerical Simulations 
 
In this section, we use the numerical simulations to show the dynamical behaviour for our model. Thus, we 
carry out some sensitivity analysis of the basic reproduction number using the model parameters which are 
displayed in Table 2. 
 

Table 2. Parameter values 
 

Parameter                  Value Source 
b 
� 
�                     
� 
� 
� 

                  0.0000323 
                  0.4091 
                  0.000214 
                  0.024 
                  0.00875 
                  0.0013 

Assumed 
Assumed 
Assumed 
Assumed 
[17] 
[18] 

 

  
 

Fig. 2. Simulations of model (�.�) with the 
parameters from Table 2 showing the plots of 
� (�),�(�), �(�),�(�), and �(�) when �� =

��.���� 

Fig. 3. Simulations of model (�.�) with the 
parameters from Table 2 showing the plots of 
�(�), �(�),�(�), and �(�) when �� = ��.���� 
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Fig. 4. Simulations of model (�.�) with the 
parameters from Table 2 showing the plots of 

�(�) ���  �(�)  when �� = ��.���� 

Fig. 5. Simulations of model (�.�) with the 
parameters from Table 2 showing the plots of 

�(�)  when �� = ��.���� 
 

  
 

Fig. 6. Simulations of model (�.�) with the 
parameters from Table 2 showing the plot of  

�(�)  when �� = ��.���� 

Fig. 7. Simulations of model (�.�) with the 
parameters from Table 2 showing the plots of 

� (�) ���  �(�)  when �� = ��.���� 
 

 
 

Fig. 8. Simulations of model (�.�) with the parameters from Table 2 showing the plots of  
� (�),�(�),�(�),�(�), and �(�) when �� = �.���� 
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4.1 Sensitivity analysis of the basic reproductive numbers  
 
We investigate the behaviour of the model (2.1) by conducting a sensitivity analysis of the basic 
reproduction number (��) 
 

1) If we change b from 0.0000323 �� 0.0323, the value of �� will change from 16.7428 to 0.4867< 1 
2) If we decrease � from 0.0013 �� 0.000013, then �� will change from 16.7428 to 0.9381 
3) If we increase � from 0.024 to 0.512, then �� will reduced from 16.7428 to 0.7855 
4) If we decrease � from 0.409 to 0.004091, then �� will reduced from 16.7428 to 0.1674 

 

 

 
 

Fig. 9. The relationships between �� and � Fig (�), �  Fig (�), � Fig (�) and  � Fig (�)   when �� > 1 
with the parameter values from Table 2 

 

 
 

Fig. 10. The relationships between �� and � Fig (�) and � Fig (�) when �� < 1 with the parameter 
values from Table 2 
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5 Discussions of Results  
 
We used MSEIR model to study the behaviours of measles transmission. We obtained the basic reproduction 
number using the next generation matrix method and also discussed the existence and stability of disease-
free and endemic equilibria. Sensitivity analysis of the reproduction number was performed based on the 
parameter values in Table 2. The basic reproduction number, ��, of endemic equilibrium was calculated to 
be �� = 16.7428> 1, this shows the situation in which all the classes coexist in the population see 
Figures(2,3,4,5,6 ��� 7) which is verified by our analytic results. The endemic equilibrium is locally 
asymptotical stable if �� > 1, under certain conditions. 
 
Moreover, we considered the sensitivity analysis of �� based on Table 2, the basic reproduction number 
�� = 0.4867< 1. This implied that only susceptible human �(�) is present and the other classes reduce to 
zero, therefore the model is asymptotically stable at �� < 1 and satisfies theorem 1. This has been verified 
numerically in Fig. 8 which also indicated that the disease-free equilibrium is asymptotically and globally 
stable which is proved using the Lyaponuv function. In addition to that, Fig. 9(� − �) respectively show the 
relationship of the basic reproduction number �� in terms of �,�,� ��� � when �� > 1. Also, Fig. 10(�,�) 
presents the relationship of ��, in terms of � and � when �� < 1 respectively. 
 

6 Conclusions 
 
Our model shows that treatment and vaccination of measles are not the only ways to control the disease but, 
also by increasing the birth rate of a human, reducing the progression rate, increasing the recovery rate and 
decreasing the infection rate can be very useful in controlling and combating the disease. 
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