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Abstract 
 

The combined effects of chemical reaction, radially applied magnetic field and Hall effect on entropy 
generation of a steady third grade magnetohydrodynamic fluid flowing through a uniformly circular pipe 
was studied. The governing equations are presented and the resulting non-linear dimensionless equations 
are solved numerically using Galerkin Weighted Residual Method. The velocity, temperature and 
concentration profile were obtained and utilized in computing the entropy number. A parametric study of 
germane parameters involved are presented graphically and discussed. It was observed that irreversibility 
due to heat transfer dominates the flow compared to fluid friction and Hall parameter inhibits the Bejan 
number while Magnetic parameter enhances the Bejan number. 
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1 Introduction 
 
Magnetohydrodynamic (MHD) flows in rectangular and cylindrical system continue to stimulate significant 
interest in the field of engineering science and applied mathematics. This interest is owned to the numerous 
important applications in biological and engineering industry such as reactive polymer flows, extraction of 
crude oil, synthetic fibres, paper production and also in absorption and filtration processes in chemical 
engineering. Krishna and Gangadhar Reddy [1] discussed the unsteady MHD free convection in a boundary 
layer flow of an electrically conducting fluid through porous medium subject to uniform transverse magnetic 
field over a moving infinite vertical plate in the presence of heat source and chemical reaction. Krishna and 
Subba Reddy [2] have investigated the simulation on the MHD forced convective flow through stumpy 
permeable porous medium (oil sands, sand) using Lattice Boltzmann method. Krishna and Jyothi [3] 
discussed the Hall effects on MHD Rotating flow of a visco-elastic fluid through a porous medium over an 
infinite oscillating porous plate with heat source and chemical reaction. Reddy et al. [4] investigated MHD 
flow of viscous incompressible nano-fluid through a saturating porous medium. Recently, Krishna et al. [5-
8] discussed the MHD flows of an incompressible and electrically conducting fluid in planar channel. Veera 
Krishna et al. [9] discussed heat and mass transfer on unsteady MHD oscillatory flow of blood through 
porous arteriole. The effects of radiation and Hall current on an unsteady MHD free convective flow in a 
vertical channel filled with a porous medium have been studied by Veera Krishna et al. [10]. The heat 
generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and 
chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the 
Hall current into account have been studied by Veera Krishna and Chamkha [11]. Taza et al. [12] considered 
the heat transfer analysis in MHD thin film flow of third grade fluid on a vertical belt with slip boundary 
conditions. Veera Krishna et al. [13] investigated the heat and mass transfer on MHD free convective flow 
over an infinite non-conducting vertical flat porous plate. Veera Krishna and Jyothi [14] discussed the effect 
of heat and mass transfer on free convective rotating flow of a visco-elastic incompressible electrically 
conducting fluid past a vertical porous plate with time dependent oscillatory permeability and suction in 
presence of a uniform transverse magnetic field and heat source. Taza et al. [15] presented the analysis of a 
thin film flow in MHD third grade fluid past a vertical belt with temperature dependent viscosity emploring 
the ADM and OHAM. 
 
The steady flow of a reactive variable viscosity fluid in a cylindrical pipe with isothermal wall was studied 
by Makinde [16], reporting the dependence of the steady state thermal ignition criticality conditions on both 
Frank-Kamenetskii and viscous heating parameters. Makinde et al. [17], numerical investigation for the 
entropy generation rates in an unsteady flow of a variable viscosity incompressible fluid through a porous 
pipe with uniform suction at the surface were examined. In Ajadi [18], closed-form solution using 
Homotopy Analysis method on the effect of variable viscosity and viscous dissipation on the thermal 
stability of a one-step exothermic reactive non-Newtonian flow in a cylindrical pipe assuming negligible 
reactant consumption were obtained. In, Aiyesimi et al. [19] considered a mathematical model for a dusty 
viscoelastic fluid flow in a circular channel was considered, observing that an increase in the value of 
magnetic field and viscoelastic parameter reduces the horizontal velocity of the fluid and particles, thereby 
reducing the boundary layer thickness, hence inducing an increase in the absolute value of the velocity 
gradient at the surface.  
 
The thermodynamics second law analysis and its design-related concept of entropy generation minimization 
has been a cornerstone in the field transfer and thermal design. Several researchers were motivated to study 
fundamental and applied engineering problem based on second law analyses, due to the production of 
entropy resulting from combined effects of velocity and temperature gradient. Generating entropy is tied to 
thermodynamic irreversibility, which is common in all heat transfer process. Eegunjobi & Makinde [20] 
investigated the combined effects of buoyancy force and Navier slip on the entropy generation rate in a 
vertical porous channel with wall suction/injection. The combined effects of Navier slip, convective cooling, 
variable viscosity and suction/injection on the entropy  generation rate in an unsteady flow of an 
incompressible viscous fluid flowing through a channel with permeable wall was studied by Chinyoka & 
Makinde [21]. 
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In this paper, the motivation comes from a desire to gain more understanding into the combined effect of 
radially applied magnetic field and Hall current on the flow of chemically reactive third grade fluid. The 
relevant governing equation has been solved numerically by Galerkin Weighted Residual Method [22,23]. 
The effects of the various apposite parameters on the velocity, temperature and concentration are presented. 
In this work, entropy generation rate of a laminar MHD flow of a reactive third grade fluid is considered in a 
circular pipe, which is assumed electrically conducting and incompressible in the presence of an externally 
applied radially exponential magnetic field. 
 

2 Mathematical Formulation 
 
Considering a steady flow of electrically conducting, incompressible, third grade fluid in a non-conducting 
circular pipe in the absence of gravitational force. The z-axis is taken along the axis of flow. Radially 

exponential varying magnetic field 
0

2 
r

r

RB B e  is applied (Bartella et al. [24]) and no electric field is 

applied. The flow is induced due to constant applied pressure gradient in the z-direction and electron atom 
collision frequency is assumed to be relatively high compared to the collision frequency of ions. The 
equations which govern the MHD flow are the continuity, momentum and Maxwell equations. In fluid 
dynamics studies, it is assumed that the flows meet the Clausius-Duhem inequality and the specific 
Helmholtz free energy of fluid has a minimum at equilibrium (Rajagopal, [25]). Using the velocity field 

(0,  0, w( )),V r  the incompressibility condition is satisfied identically and momentum and Maxwell 

equations after the constitutive equations 
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Makinde [16], Chinyoka & Makinde [26] and under stated assumptions the governing equations may be 
written as given by Makinde et al. [17], Ellahi [27,28] 
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where 
2

0 0 0
ˆ, , , , , , , , , , , , , , ,m T p c w w
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w T B p p m k q D c k T T C C
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 

    
 

 are fluid velocity, fluid 

temperature, applied magnetic field strength, modified pressure, electrical conductivity, Hall parameter, 
thermal conductivity, thermal radiation, molecular diffusivity, thermal diffusivity, specific heat capacity, 
chemical reaction rate constant, reference temperature, wall temperature, reference concentration and wall 
concentration. 
 
Introducing the following non-dimensional quantities by Ellahi [28] into (2.2) to (2.5) and the boundary 
conditions 
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and using Rosselands approximation  
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Dufour number, radiation parameter, Schmidt number, chemical reaction parameter, Stefan-Boltzmann 
constant and mean absorption coefficient. For steady flow, the time dependent terms are set to zero and the 
following are equations were obtained respectively with the boundary conditions 
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Equations (2.8), (2.9), (2.10) and (2.11) comprise the boundary value problem to now be solved. 
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3 Methods 
 
3.1 Galerkin weighted residual methods 
 
Suppose an approximate solution is to be determined for the differential equation of the form 
 

  0   L f                    (3.1) 

 

where ( )x   is an unknown dependent variable,  L  is a differential operator and  ( )f x  is a known 

function. Let 
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unlikely that (2.8) is satisfied i.e.   0L f    therefore 
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These are a set of n-order linear equations to be solved to obtain all the ic  coefficients. The trial functions 

can be polynomials, trigonometric functions etc. The trial functions are usually chosen in such that the 
assumed function ( )x  satisfies the global boundary conditions for ( )x though this is not strictly 

necessary and certainly not always possible [22].  
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Taking into account of orthogonality of the residues above, we have 
 

2
1

2 3 20 0 0

1 0 2 20

4
, (1 )(1 32 ) 0

1 1
a

e

a Me a Me a
u R a d

R m m

 
         

 

 
 
 

  

 

2 2 2

* * 1 1 * 0

1
4 4 2 2

2 * 0 * 1 *0

* 1

* 1 * 1 *

1
( )(2(1 ) ( 2) 2 4

, 16 0

4 4 )

r c

b r c e H r e H r e

u r e

H r e u r e u r e

R R b b P E P a

u R P E R P a Q P R P b Q P R P d

D P R Pc
Q P R P b D P R Pc D P R P

  


   




     

     

   

 
 
 
 
 
 
  

  

 

2 3 3 21
1 1 0 1 0 0 1

3 0
2 2

0 1 0 0 1 1 1

( 4(1 ) 2 2 2
, 0

+2 2 )

)(
c c c

c

c c c R R R

c
c S a c S a S a c

u R d

S a c S a S a c K c K K c

    
 

    

     
 

    

 
 
 
  

  

 

The symbolic calculation software MAPLE 2016 is used to compute the values of 0 1 1, ,a b c  and the 

approximate solutions. 
 

3.2 Entropy generation 
 
Inherent irreversibility in a pipe flow occurs owing to exchange of energy and momentum within the fluid 
and the solid boundaries. The entropy generation is owed to heat transfer and the effects of fluid friction. 
The equation for rate of entropy generation per unit volume [17,21] is given 
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where the first term in (4.1) is the irreversibility due to heat transfer, the second and third term are entropy 
generation due to viscous dissipation. Introducing the dimensionless quantities in (2.6) to (4.1), we have 
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where 
1

N  is irreversibility due to heat transfer and 

The Bejan number is defined as 
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the limit at which total irreversibility dominates, and 

 

4 Results and Discussion 
 
In this section, results are presented and discussed. Fig. 1 depicts the influence of magnetic parameter, 
increasing the magnetic parameter decreases the flow profile of the system owning to the Lorentz force 
acting in contradiction of the flow. Fig. 2 shows the Hall parameter enhancing the flow profile with 
increasing Hall values. Increasing the Reynolds number enhances the velocity profile as shown in Fig. 3. In 
Fig. 4, the thickening effect of the fluid in r
Figs. 5-7 portrays the effect of Eckert, Prandtl and Reynolds number on the temperature profile. 
Considerable increase in the Eckert number slightly increases the temperature profile then in
Prandtl number and Reynolds number decreases the temperature field of the system. Since Prandtl number is 

the ratio of kinematic viscosity to thermal diffusivity so as 

thermal diffusivity causing the velocity flow field to decrease. The temperature field in Fig. 8 is enhanced 
with increasing the radiation parameter.
 

Fig. 1. Effect of varying magnetic parameter (M=1, M=10, M=20) on velocity profile
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is irreversibility due to heat transfer and 
2

N gives entropy generation due to viscous dissipation. 

       

1  is the limit at which heat transfer irreversibility dominates,

the limit at which total irreversibility dominates, and 1
2e

B  connotes equal contribution [30].
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increasing the magnetic parameter decreases the flow profile of the system owning to the Lorentz force 
acting in contradiction of the flow. Fig. 2 shows the Hall parameter enhancing the flow profile with 
increasing Hall values. Increasing the Reynolds number enhances the velocity profile as shown in Fig. 3. In 
Fig. 4, the thickening effect of the fluid in regard to increasing thirdgrade parameter inhibits the flow field.

7 portrays the effect of Eckert, Prandtl and Reynolds number on the temperature profile. 
Considerable increase in the Eckert number slightly increases the temperature profile then in
Prandtl number and Reynolds number decreases the temperature field of the system. Since Prandtl number is 

the ratio of kinematic viscosity to thermal diffusivity so as 
r

P  increases, the kinematic viscosity dominate 

mal diffusivity causing the velocity flow field to decrease. The temperature field in Fig. 8 is enhanced 
with increasing the radiation parameter. 
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Fig. 3. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on velocity profile 
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Fig. 4. Effect of varying Thirdgrade parameter ( =1,  =50, =100) on velocity profile 
 

 
 

Fig. 5. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on velocity profile 
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Fig. 6. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on temperature profile 
 

 
 

Fig. 7. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on temperature profile 
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Fig. 8. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on temperature profile 
 
Figs. 9-10 depicts the influence of Dufour and Schmidt numbers on the concentration profile. Increasing the 
Dufour number increases the concentration field while the concentration profile decreases with increasing 
values of Schmidt number. This shows that heavier diffusing species have a greater retarding effect on the 
concentration distribution. The entropy generation profile is portrayed in Figs. 11-14 with influences of 
Reynolds, Prandtl, Eckert numbers and radiation parameter. Increasing the Reynolds number enhances the 
entropy generation while increasing Eckert number inhibits entropy generation. Increasing the Prandtl 
number decreases the entropy generation firstly around the pipe centreline then it enhances entropy rapidly 
towards the pipe wall while increasing the radiation parameter enhances the entropy generation around the 
centreline firstly then it inhibits it rapidly towards the pipe wall. 
 

 
 

Fig. 9. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on concentration profile 
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Fig. 10. Effect of varying Schmidt number (Sc=0.5, Sc=10, Sc=25) on concentration profile 
 

 
 

Fig. 11. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on entropy generation profile 



 
 
 

Aiyesimi et al.; ARJOM, 12(3): 1-20, 2019; Article no.ARJOM.43604 
 
 
 

13 
 
 

 
 

Fig. 12. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on entropy generation profile 
 

 
 

Fig. 13. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on entropy generation profile 
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Fig. 14. Effect of varying Radiation parameter (Rp=0.1, Rp=0.2, Rp=0.4) on entropy generation 
profile 

 
Figs. 15-22 presents the influence of Hall parameter, magnetic parameter, Prandtl number, Eckert number 
Reynolds number, thirdgrade parameter, Dufour number and reaction parameter on Bejan number. 
Increasing the Hall parameter, Eckert number and Reynolds number inhibits the Bejan number and the 
irreversibility due to heat transfer dominates over total irreversibility from the pipe centreline to pipe wall 
except for Reynolds number where irreversibility due to total dominates gradually towards the pipe wall. On 
increasing the magnetic parameter, thirdgrade parameter, Dufour number and reaction parameter enhances 
the Bejan number and the irreversibility due to heat transfer dominates over total irreversibility. Increasing 
the Prandtl number firstly inhibits the Bejan number around the pipe centreline then it enhances Bejan 
number towards the wall of the pipe and the flow is dominated by heat transfer irreversibility. 
 

 
 

Fig. 15. Effect of varying Hall parameter (m=0.1, m=1, m=10) on Bejan number 
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Fig. 16. Effect of varying Magnetic parameter (M=1, M=10, M=20) on Bejan number 
 

 
 

Fig. 17. Effect of varying Prandtl number (Pr=0.07, Pr=25, Pr=50) on Bejan number 



 
 
 

Aiyesimi et al.; ARJOM, 12(3): 1-20, 2019; Article no.ARJOM.43604 
 
 
 

16 
 
 

 
 

Fig. 18. Effect of varying Eckert number (Ec=0.1, Ec=100, Ec=500) on Bejan number 
 

 
 

Fig. 19. Effect of varying Reynolds number (Re=4, Re=8, Re=12) on Bejan number 
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Fig. 20. Effect of varying Thirdgrade parameter ( =1, =50, =12) on Bejan number 
 

 
 

Fig. 21. Effect of varying Dufour number (Duf=2, Duf=3, Duf=4) on Bejan number 
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Fig. 22. Effect of varying reaction parameter (Kr=1, Kr=2, Kr=4) on Bejan number 
 

5 Conclusion 
 
In this numerical investigation, the entropy generation rate of steady reactive magnetohydrodynamic third 
grade fluid flow in a circular pipe is presented using the Galerkin method. Numerical expression for the 
velocity, temperature and concentration was obtained which were used to compute the entropy generation 
number. Special emphasis has been focused on the variations of pertinent parameter of physical significance 
on the entropy generation rate and Bejan. The main findings of the present analysis are: 
 

 The velocity is enhanced for increasing values of , Rem  and inhibited for ,M    

 The temperature is enhanced for values of ,Ec Rp  and inhibited for P , Re  and r Du   

 The concentration is enhanced values of ,
R

Du K  and inhibited for  and ReSc  

 Re,
R

K and Du  have enhancing effects on the entropy generation rate. 

 , ,
R

M Du K  and   enhances the entropy generation rate while it is inhibited for  Re  and Ec . 
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