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ABSTRACT 
 

In this article, we solve analytically the nonlinear Doubly Dispersive Equation (DDE) in (1+1)-D by 
the homogeneous balance method, introduced to investigate the strain waves propagating in a 
cylindrical rod in complex polymer systems. The linear dispersion relation plays important role in 
connecting the frequency of the emitted nonlinear waves with the wave number of the ablating 
laser beam affecting the polymers with their characteristic parameters. In accordance with the 
normal dispersion conditions, the resulting solitary wave solutions show the compression 
characters in the nonlinearly elastic materials namely Polystyrene (PS) and 
PolyMethylMethAcrylate (PMMA). The ratio between the estimated potential and kinetic energies 
shows good agreement with the physical situation, and as well in making comparisons with the bell-
shaped model conducted in the literature. 
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1. INTRODUCTION 
 

The Korteweg de-Vries (KdV) is one of the first 
long wave models which we use in mathematics 
and physics, many authors, such as Nariboli and 
Sedove [1] uses the equation of (KdV) to study 
the far-field structure of waves in cylinders and 
plates, and tried to solve it for the propagation of 
longitudinal waves in non-linear elastic medium. 
Later on the construction of it a study had been 
conducted in [2], which asked about the possible 
existence of solitary waves in infinite, 
homogeneous, isotropic, elastic media. In [3,4] 
the authors succeeded by pioneering 
experiments to generate bulk solitary waves in 
optically transparent polymeric material such as 
polystyrene (PS) and Plexiglas (PMMA), and 
showed that splitting of a waveguide leads to 
fission of bulk solitons in solids. They 
investigated the strain solitons and showed how 
to construct them in solids [5], and theoretically 
proved by using the so called doubly dispersive 
equation (DDE), longitudinal bulk solitary waves 
in an elastic rod which is not similar to 
Boussinesq, but could be said that it is an of this 
type with two kinds of dispersive terms.  
 

In [5] the propagation of a weakly nonlinear wave 
in a thin circular rod of radius R proved that the 
wave equation is not Boussinesq, since the 
arrangements of real physical experiments 
including generation, detection and observation 
of strain solitary waves in solids are investigated. 
 

The studies on strain solitary waves in different 
polymers shapes via various conditions and 
materials were conducted in [6,7], where the 
experimental and theoretical investigations 
demonstrate the physical possibility of generation 
and further propagation of bulk strain solitary 
waves in waveguides made of nonlinearly elastic 
materials, like glassy polymers, Polystyrene (PS) 
and Polymethyl Methacrylate (PMMA). In the 
experimental trials set-up, physics authors in 
[2,3,5,7,8,9] and recently in [10] had been using 
and reporting about the laser ablation to remove 
or destruct polymer materials by vaporization and 
erosive processes. This process is mainly 
influenced by the nature of the polymers material 
and their tendency to absorb energy, such that 
the wavelength of the ablation laser should have 
a threshold absorption depth [11]. 
 

2. STATEMENT OF THE PHYSICAL 
PROBLEM AND BASIC EQUATIONS 

 

It is considered that a finite homogenous 
isotropic cylindrical rod of a nonlinearly elastic 

compressible material in a system of cylindrical 

Lagrangian coordinates ( , , )x r   with the x axis 
coinciding with the rod axis, and   [0, 2 ]   , 

0 r R   , and 
2 2

l l
x   , where R and  x  are 

the rod radius and length respectively, with no 
torsion, see [5,6]. In particular, the generation 
and recording of the bulk compression waves 
performed using Q-switched pulsed ruby lasers 
(20 ns, 0.5 J), in order to propagate the strain 
waves in polymeric material, as was described 
above. The longitudinal wave equation of a finite 
deformation elastic circular rod describing DDE is 
[8] 
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where ),( tx  is the strain function,  x and t are 

the space coordinate and time, respectively. This 
leads to a KdV-type equation under the one-
wave restriction, where the nonlinearity 

coefficient   depends on Murnaghan’s modulo 

( , , )l m n  Young’s modulus (3 2 )
E
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where  is the density of material; here we have 

introduced the linear longitudinal wave velocity 

oc  as the speed of linear P-wave and 1c  as the 

speed of linear S-waves which one defines as  
 

1     ,     c       
2(1 )

o
o

cE
c



  
  


.      (3) 

 

3. METHOD OF SOLUTION 
 

3.1 Dispersion Analysis: Group and 
Phase Velocities 

 
Several methods were used to solve nonlinear 
equations, after replacing the independent 
variables (x, t) by a single variable called as the 
travelling wave variable such that,  
 

kx t    ,                                                  (4) 

 

where k is the wave number in (rad/m) and  is 
the frequency (rad/sec.). 
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To find the relation between the wave number 
and the frequency we substitute eq. (4) into eq. 
(1), after neglecting the nonlinear term in it. In 
general, the process of neglecting the nonlinear 
terms is an approximation step in order to follow 
separately the effect of linearity, so we get the 
form,    
    

2 2 2 2
1

1
[ ( )]

2o xx xx xxtt ttv c v R v c v   .    (5) 

 

Expressing the strain linearly as  
 

0( , ) expx t v i 
.                                        (6) 

 

Now we substitute expression (6) in (5) we get 
the linear dispersion relation 
 

��
��� − �� +

1

2
������(��

��� − ��) = 0 

 

  with two branches (±): 
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Regarding equation (7), as long as the speed 
and direction of energy transport is determined 
by the group velocity [12], the difference between 

the group velocity (Vgr= / k  ) 
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and the phase velocity of the individual waves 

travelling along the rod (Vph= / k )  
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c c k R
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,                     (9) 

 

should indicate whether the waves in the system 
are normally or anomalously dispersive with 
respect to the chosen laser wave numbers that 
are affecting the polymer materials under study. 

As we shall see latter that  will satisfy the 

condition of normal dispersion. 
 

3.2 The Homogeneous Balance Method 
 

The homogeneous balance method [13] is a 
powerful tool to find solitary wave solutions of 

nonlinear partial differential equations. Fan and 
Zhang [14] introduced the homogeneous balance 
method throughout the search for Bäcklund 
transformations and obtained more solutions.  
 

Resorting first to  (4), we substitute equation (6) 
in equation (1) and by using the following 

differentials ,   
d d

k
t d x d


 

 
 

 

 , we get: 

 

2 2 2 2 2 2 2 2 2 2 4
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2
c k v k v R k c k v  


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
    

.                                      (10) 
 

It is well known that soliton waves with infinite 
support are generated as a result of the balance, 
e.g. in [15,14], between the nonlinear convection 

term 
2( )v  which causes the steepening of 

the wave form and the linear dispersion term 

v   which makes the wave form spread, as 

the integrable nonlinear KdV Equation in 
equation (1), this can also be seen in evolution 
equations such as the Boussinesq and the 
Schrödinger equations [16,17].  
 

Following the basic rules in [13], we will verify in 
(10) the homogeneous balance between the 
highest order derivative terms with nonlinear 
terms to this system : the highest order derivative 

term namely v    gives f+4, while the highest 

non-linear term is  2 2( ) 2(  ( ) )v v v v    , 

which gives in both terms 2f+2; hence equating 
to get  f=2. 
 

The Complex-Tanh function method is one of 
those methods, which are widely applied in 
solving such a problem. Let us expand the strain 
variable in the truncated series to the power f as  
 

2

0

( ) tanh ( )
f

f
f

f

v a i 




      .                       (11) 

 

This gives 
 

)(tanh)tanh()( 2
210  iaiaa  .   (12) 

 
Using symbolic software Mathematica [18], 
substituting from (12) into (10) we get a system 
of algebraic equations corresponding to different 
powers of the Tanh-function, the case which 

satisfies the physical situation for 0a , 1a  and 2a
is the following: 
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Accordingly, substituting these coefficients in 
equ. (12), this will describe the strain in the 
studied materials by knowing their densities, 
Murnaghan’s numbers, Young’s modulus and 
Poisson ratios. 
 
The authors in [15] among others, studied the 
physical possibility of the generation and 
propagation of bulk longitudinal strain solitons in 
waveguides made of nonlinear elastic polymeric 
materials; such as polystyrene (PS) and 
polymethyl methacrylate (PMMA). The strain 
soliton represents a powerful localized wave 
capable of transferring elastic energy over 
considerable distances almost without losses.  
 

4. KINETIC AND POTENTIAL ENERGIES 
 
In terms of the strain function, the kinetic and 
potential energies which are mentioned in [4,8] 
are respectively:  
 

1 12 2 2

2 4
T sv v

t tt
   ,                           (14) 

 

2
2 3 2

3 22
p

ss
E Ev v v

x x xx

  


  

 
 
  

           (15) 

 
According to the study [9] and after a long time in 
[10], they extensively investigated the damage 
effects of various energetic laser beams on 
polymers such as PS and PMMA, is known as 
laser ablation. Their results show that the 
damage is determined by two types of 
processes: physical interaction of radiation with 
the substance and mechanical development of 
the damage cracks. Therefore, due to laser 
ablation this enables us to make the signs of the 
ratio between 

p
E and T as a measure of micro-

structural instabilities in the studied materials 
according to the wave numbers (wavelength). 

 
Dreiden, Samsonov and Semenova [15] solved 
the DDE equation independently from the 
discrete elastic lattice problem as a continuum 
limit for guided waves in the lattice. Its general 
solution in terms of the Weierstrass elliptic 
functions, with proper limit to solitary wave 

solutions, which describes the relation between 

strain v as a function of the length  x  and time  t  
in equation (1). 
 
The solution of the strain is bell-shaped: 
 

2 1
cosh [ ( ( ) )]

( )
v A x V A t

L A
  ,            (16) 
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1          ,c
2(1 )

E c
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
,

 5
,   

(1 ) 8
A

c c

 



 


   (17) 

 
Accordingly, they firstly proved experimentally 
that there is a deformation done in polymeric 
materials, and the amplitude A is proportional to 
soliton velocity V is constant. Secondly, they 
proved that there always will be at least one 
discrete eigenvalue, i.e., at least one solitary 
wave in the transmitted wave field, accompanied 
by the radiation corresponding to the continuous 
spectrum. 

 
5. THE RESULTS AND DISCUSSION 
 
In this paper, we have studied the propagation of 
a nonlinear longitudinal bulk strain wave in a rod 
of a polymeric materials and comparing the 
results with the results governed in [15], we get 
almost the same results with respect to the strain 
function. It ensures the success of the Tanh-
function method applied as a truncated series in 
the homogeneous balanced equation to find the 
strain function in polymeric materials under 
study. 
 

Table 1 summarizes the mechanical 
characteristics of (PS) and (PMMA), which are 
important with respect to the generation and 
propagation of strain solitons in waveguides 
made of these polymers. Notice that the figures 
are presented at the best view angles. 
 
While we plot the strain for Ps and PMMA use is 
made of the data in Table (1), at 0 <t < 10

-3
 sec., 

and -0.025 m <x < 0.025 m (the length of the 
rod=0.05m), introduced in [13]. 
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Table 1. Elastic properties of polymeric materials [6] 
 

 Density Young 
modulus 

Poisson 
ratio 

Elastic moduli, 3rd order 
(Murnaghan)    (N/m

2
 10

10
) 

Sound velocity 
in a rod 

   

(Kg/m
2
 ) 

E 

(N/m
2
10

10
) 

  l m n C0 (m/s) 

 

PS 1060 0.37 0.34 -1.89 -1.33 -1 1870 

PMMA 1160 0.5 0.34 -1.09 -0.77 -0.14 2080 
 
The wave number k plays important role in 
connecting the frequency of the emitted 
nonlinear waves with the wave number of the 

laser beam ablating the polymers together with 
their characteristic parameters. 
 

 

 
 

Fig. 1. Dispersion curves of ( gr ph 0V V  ) versus  k  , the normal dispersion for PMMA and 

PS obeying , the two curves end points correspond to the laser wavelengths
-6 -61.06 10  and 0.69 10m m   respectively 

 

PS( ) 

 
Fig. 2-a                                                                                     Fig. 2-b 

 
Fig. 2 (a,b). The strain and the energy ratio of PS at the wave number k= 9.1×10

6
 rad m

-1
. and 

wave length �=0.69� 
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Fig (3-a)                                                                                     Fig(3-b) 

 

Fig. 3 (a,b). The strain and the energy ratio of PS at the wave number at the wave number 

k=  5.92753× 106 rad m
-1

. and =1.06 
 

PMMA( ) 

 
 

Fig. 4-a                                                                   Fig. 4-b 
 

Fig. 4 (a,b). The strain and the energy ratio of PMMA at the wave number k= 9.1×106 rad m-1. 
and wave length �=0.69� 

 

 
 

Fig. 5-a                                                             Fig. 5-b 
 

Fig. 5 (a,b). The strain and the energy ratio of PMMA at the wave number k=  5.92753× 106 rad 

m-1. and =1.06µ 
 

 
 

Fig. 6-a                                                                             Fig. 6-b 
 

Fig. 6 (a,b). The strain and the energy ratio of PMMA and PS  conducted in [6] 
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The results are presented with respect to at the 

negative branch  .  It is found out that: 
 

1- From Fig. 1, the difference between the 
group and phase velocities are illustrated 
for normal dispersion where 

-8 -6.4419 10 0 gr phV V    at =0.69 µ, 

and -7 -1.5203 10 0 gr phV V    at =1.06 

µ, both velocities and wavenumbers are 
normalized with respect to the linear 
longitudinal wave velocity oc  and the 

specimen length L=0.05 m, for PMMA(in 
Red) and PS (in Blue) polymers 
respectively, see [19]. 

2- The Figs.(2-a,3-a,4-a,5-a) are representing 
the strain solitons stemmed from equations 
(12), together with the coefficients in (13), 
as a function of space x and time t. They 
are in excellent agreement with Figs.(6, a) 
attributed to the results in [15]. 

3- Figs.(2-b,3-b,4-b,5-b) correspond to the 
calculated ratio between the potential and 
kinetic energies in equations (14) and (15). 
It is found out that these ratios are 
fluctuating between +ve to -ve signs which 
is an acceptable behaviour due to laser 
ablation. In comparing these figures with 
Fig.(6, b), due to the data in Table (1) and 
the solution resulted in [15], good 
agreements with the experimental works in 
[9,10] take place. 

 

6. CONCLUSION 
 

In this article, we solve analytically the nonlinear 
Doubly Dispersive Equation (DDE) in (1+1)-D by 
the homogeneous balance method. The linear 
dispersion relation plays important role in 
connecting the frequency of the emitted 
nonlinear waves with the wave number of the 
ablating laser beam affecting the polymers with 
their characteristic parameters. The Tanh-
function method is applied as a truncated series 
to estimate the nonlinear longitudinal bulk strain 
wave in a rod of complex polymer systems. In 
accordance with the normal dispersion 
conditions, the resulting solitary wave solutions 
show the compression characters in the 
nonlinearly elastic materials together with the 
fluctuating in signs presented by the ratio 
between the potential and kinetic energies due 
damage effects. 
 

COMPETING INTERESTS 
 

Authors have declared that no competing 
interests exist. 

REFERENCES 
 

1. Nariboli GA, Sedov A. Burgers’s-
Korteweg-De Vries Equation for 
Viscoelastic Rods and Plates. J.  Math. 
Anal. Appl. 1970;32:661-677. 

2. Crighton DG. Applications of KdV in solids: 
Acta Applicandae Mathematicae. 1995;39: 
39-67. 

3. Ostrovskii LA, Sutin AM. Nonlinear elastic 
waves in rods.Appl. Math. Mech. 1977;41: 
543. 

4. Engelbrecht J. Nonlinear wave processes 
of deformation in solids. Pitman, London; 
1981. 

5. Samsonov AM. Soliton evolution in a rod 
with variable cross section. Sov. Phys. 
Dokl. 1984;29:586-588. 

6. Dreiden GV, Ostrovsky YI,  Samsonov AM, 
Semenova IV, Sokurinskaya EV. 
Formation and propagation of deformation 
solitons in a nonlinearly elastic solid,              
Sov. Phys. Tech.  Phys. 1988;33:1237. 

7. Semenova IV, Dreiden GV, Samsonov 
AM. Strain solitary waves in polymeric 
nanocomposites, Ioffe Physical Technical 
Institute of the Russian Academy of 
Sciences; 2010. 

8. Karima R, Khusnutdinova AM. Samsonov. 
Fission of a longitudinal strain solitary 
wave in delaminated bar, Physical 
Reviewed 77, 066603; 2008. 

9. Agranant MB, Krasyuk IK, Novikov NP, 
Perminov VP, Yu I, Yudin, Yampol'sskii 
PA. Destruction of transparent dielectrics 
by laser radiation. Zh. Eksp. Teor. Fiz. 
1971;60:1748-1756. 

10. Sandeep Ravi-Kumar, Benjamin Lies, Xiao 
Zhang , Hao Lyu , Hantang Qin. Laser 
ablation of polymers: A review. Polym. Int. 
2019;68:1391-1401.  

DOI: 10.1002/pi.5834 

11. Samsonov AM. Strain solitons in solids 
and how to construct them. Chapman and 
Hall/CRC, Boca Raton, FL; 2001. 

12. Born M, Wolf E. Principles of optics. 7th 
ed., Cambridge University Press, 
Cambridge, UK. 1999;Chap. 1. 

13. Abdul-Majid Wazwaz, New solitons and 
kink solutions for the Gardner equation, 
Communications in Nonlinear Science and 
Numerical Simulation; 2006. 

14. Fan EG, Zhang HQ. Solitary wave 
solutions of a class of nonlinear wave 



 
 
 
 

Abourabia and Eldreeny; PSIJ, 23(4): 1-8, 2019; Article no.PSIJ.53244 
 
 

 
8 
 

equations. Acta Physica Sinica. 1997; 
46(7):1254–1258. 

15. Dreiden GV, Samsonov AM, Semenova 
IV. Bulk elastic strain solitons in 
polycarbonate. Russian Academy of 
Sciences; 2011. 

16. Kivshar Y. Compactons in discrete lattices. 
Nonlinear Coherent Struct Phys Biol. 1994; 
329:255–8. 

17. Dinda PT, Remoissenet M. Breather 
compactons in nonlinear Klein–Gordon 

systems. Phys Rev E. 1999;60(3):6218- 
21. 

18. Wolfram Mathmatica-9 is a trademark               
of Wolfram Research, inc;                   
2012. 
Available:www.wolfram.com 

19. Zhang ZM, Keunhan Park. On the group 
front and group velocity in a dispersive 
medium upon refraction from a 
nondispersive medium, Transactions of the 
ASME. 2004;244(126). 

_________________________________________________________________________________ 
© 2019 Abourabia and Eldreeny; This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited. 

 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle4.com/review-history/53244 


