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ABSTRACT

Relativistic properties of a Dirac Lagrangian density are compared with those of a Dirac
Hamiltonian density. Differences stem from the fact that a Lagrangian density is a Lorentz
scalar, whereas a Hamiltonian density is a 00-component of a second rank tensor, called the
energy-momentum tensor. This distinction affects the form of an interaction term of a Dirac
particle. In particular, a tensor interaction term of a Dirac Lagrangian density transforms to a
difference between a vector and an axial vector of the corresponding Hamiltonian density. This
outcome shows that fundamental principles can prove the V-A attribute of weak interactions. A
further analysis supports these results. Inherent problems of the electroweak theory are discussed.
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1 INTRODUCTION

There is now a common agreement concerning
the crucial role of the variational principle
and of its Lagrangian density L(ψ(x), ψ(x),µ)
in the structure of a quantum field theory
(QFT) of a given elementary quantum particle.
This Lagrangian density is a Lorentz scalar.
For example: ”All field theories used in
current theories of elementary particles have
Lagrangians of this form” (see [1], p. 300).
Another support for this approach states that the
variational principle is ”the foundation on which
virtually all modern theories are predicated” (see
[2], p. 353). The Euler-Lagrange equations of
a given Lagrangian density are a vital element
of this theoretical structure. These equations
are partial differential equations that describe the
time-evolution of the relevant quantum particle.

The Noether theorem is an important element
of this theoretical structure. This theorem
connects a symmetry of a Lagrangian density
with a conservation law that the relevant
theory satisfies. For example, the Noether
theorem proves that a Lagrangian density that
does not depend explicitly on the space-time
coordinates yields a theory that conserves
energy, momentum, and angular momentum
(see [3], pp. 17-19). An important part of the
proof of the Noether theorem is that the quantum
function satisfies the Euler-Lagrange equations
of the Lagrangian density.

Evidently, the validity of a given physical theory
is based on the goodness of its predictions
of relevant experimental results. The bottom
line of measuring an experimental effect is the
transition of a measuring device from an initial
state at an initial time to a different state at a
later time. An interaction term of the Lagrangian
density connects a given quantum particle to
external fields which eventually affect the state
of a measuring device. Hence, the Lagrangian
density of a given quantum particle should have
an interaction term.

The above-mentioned issues are used as the
basis for the discussion that is presented in this
work.

The electroweak theory is the Standard Model
sector that describes electromagnetic and weak
processes. This is an example of a QFT
theory of several quantum particles (see [4],
chapter 21.3). The factor (1 ± γ5) is an
important quantity of the electroweak theory,
and it agrees with a massless neutrino. The
literature substantiates the relation between a
massless neutrino and the electroweak theory.
Indeed, the factor (1 ± γ5) is associated with ”a
neutrino which travels exactly with the velocity
of light” [5]. A review article restates the neutrino
masslessness attribute of the electroweak theory:
”Two-component left-handed massless neutrino
fields play crucial role in the determination of the
charged current structure of the Standard Model”
(see the Abstract of [6]). Similarly, a textbook
says: ”Neutrino masses are exactly zero in the
Standard Model” (see [7], p. 533).

It turns out that experimental progress
has provided results that disagree with
a massless neutrino. Indeed, it is now
recognized that ”neutrinos can no longer
be considered as massless particles in the
Standard Model, representing perhaps the first
significant alteration to the theory” (see [8]).
This experimental evidence proves that the
electroweak theory has been based on an
erroneous assumption concerning the neutrino
mass. This is not a trivial issue. Thus, Wigner
has analyzed the irreducible representations
of the inhomogeneous Lorentz group (see
[1, 9, 10, 11]). An important result of his work
states that a massive quantum particle has a
well-defined mass and spin. Massless particles
belong to a different category. Instead of spin,
they have helicity and they travel at the speed of
light in every Lorentz frame.

The experimentally confirmed neutrino mass
indicates that the structure of the electroweak
theory is likely to have intrinsic problems.
Evidently, a theoretical analysis of a physical
topic is always welcome, because it aims to shed
a new light on the relevant theory. The main
objective of this work is to carry out an analysis
of weak interaction theories.

This work uses units where Planck’s constant
and the speed of light are ~ = c = 1. Greek
indices run from 0 to 3. Most formulas take
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the standard form of a relativistic covariant
expression. The metric is diagonal and its entries
are (1,-1,-1,-1). The second section shows how
the Dirac γ matrices affect the form of a Lorentz
transformation of terms of a Dirac Lagrangian
density, and that of the corresponding terms
of the Hamiltonian density. The third section
contains a further analysis of this issue. The
fourth section shows new inconsistencies in the
electroweak theory. The last section contains
conclusions of this work.

2 CONSEQUENCES OF
LORENTZ TRANSFORMA-
TION OF DIRAC γ MATRICES

It is explained in the first section why the
variational principle requires that the Lagrangian
density of a given quantum particle should have
an interaction term that is a Lorentz scalar. In
the case of a Dirac particle, this Lorentz scalar
takes the form of the scalar product of Dirac γ
matrices with an external field. For example,
the electromagnetic interaction of an electron is
described by the Dirac Lagrangian density

LD = ψ̄[γµ(i∂µ)−m]ψ − eψ̄γµAµψ (1)

where m, e are the electron’s mass and charge,
respectively, and Aµ = (V,AAA) are the
components of the electromagnetic 4-potential
(see [3], p. 84; [12], p. 78). The last term
of (1) represents interaction, and it contains the
scalar product of γµ with the external 4-potential.
Furthermore, the product of the Dirac functions

I = ψ̄ψ (2)

is a Lorentz scalar (see [12], p. 43; [13], p. 26).
Therefore, an interaction term that is enclosed
within the functions ψ̄ ψ should also be a Lorentz
scalar.

Products of the Dirac γ matrices can be
organized in five sets, where each set comprises
γs that undergo the same Lorentz transformation.
These sets are:

1 scalar

γµ vector

σµν tensor

γµγ5 pseudo-vector

γ5 pseudo-scalar, (3)

where σµν ≡ i(γµγν − γνγµ)/2 and
γ5 ≡ iγ0γ1γ2γ3 (see [12], p. 50; [13], p. 26).

The idea that a term that is based on the tensor
σµν of (3) can be applied to the electron’s
electromagnetic interaction was examined a long
time ago (see [1], pp. 14, 517, 520; [14], p. 223).
The corresponding interaction, which is called
the Pauli term, takes the form

L′ = dψ̄σµνF
µνψ, (4)

where Fµν is the electromagnetic field tensor,
and the coefficient d has the dimension of length.
The interaction (4) alters the Dirac expression for
the electron’s dipole moment (see [1], p. 14; [14],
p. 223). However, the ordinary Dirac Lagrangian
density (1), which contains no term like (4), yields
a very good prediction for the electron’s magnetic
dipole moment. Hence, the Pauli term (4) has
been abandoned as a term that pertains to the
electron’s electromagnetic interaction.

As a matter of fact, it is argued that ”the term
(4) is consistent with all accepted invariance
principles, including Lorentz invariance and
gauge invariance, and so there is no reason why
such a term should not be included in the field
equations” (see [1], p. 14). Therefore, one may
wonder why Nature has not applied the Pauli term
(4).

It is proved here how the distinction between the
form of the Dirac Lagrangian density and the
corresponding Hamiltonian density illuminates
the merits of the Pauli term (4). An application
of the following transformation to the Dirac
Lagrangian density (1) yields the required
expression for the Dirac Hamiltonian density

H =
∂L
∂ψ̇

ψ̇ − L, (5)

where the upper dot denotes a time derivative
(see [3], p. 55; [12], p. 16). This
expression proves that if the (relativistic form of
the) interaction term is derivative-free then the
interaction term of the Hamiltonian is the same
as that of the Lagrangian, but with an opposite
sign.

A general law says that the Hamiltonian is a
function of coordinates and their generalized
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momenta. An expression for the generalized
momentum which is conjugate to the coordinate
ψ of the Dirac Lagrangian density is obtained
from this expression (see [3], p. 55; [12], p. 52)

πD =
∂L
∂ψ̇

= iψ̄γ0 = iψ†. (6)

The form of the Dirac generalized momentum (6)
points out the different structures of the Dirac
Lagrangian density and that of its Hamiltonian
density. The Dirac Lagrangian density (1) is
written in terms of ψ̄, whereas the corresponding
Hamiltonian density is written in terms of ψ†,
where ψ̄ ≡ ψ†γ0. Evidently, the additional γ0

is the 0-component of the 4-vector γµ. Hence,
a transition to the Hamiltonian density entails
a modification of the relativistic form of terms
of the Dirac Lagrangian density. In particular,
interaction terms take a different form. For
example, in the case of the electromagnetic
interaction, one has the Dirac Hamiltonian
density

HD = ψ†[−iααα · ∇∇∇+ βm− eααα ·AAA+ eV ]ψ. (7)

Here ααα, β denote the four Dirac matrices, ψ†ψ
is the Dirac density, and the terms inside the
square brackets are the Dirac Hamiltonian (see
[13], p. 48). The interaction terms of the
Lagrangian density (1) do not take the same
form as those of the Hamiltonian density (7).
For example, the scalar component V ≡ A0 of
the electromagnetic 4-vector of the Lagrangian
density (1) is multiplied by the Dirac γ0 matrix,
whereas no Dirac matrix multiplies the term eV
of the Hamiltonian (7).

The corresponding changes of the Pauli tensor
interaction (4) are more dramatic. Thus, the
substitution of ψ̄ ≡ ψ†γ0 transforms (4), and the
interaction term of the Hamiltonian density is

Hint = −dψ†γ0σµνF
µνψ

= −2dψ†(iγiE
i − γ5γiB

i)ψ,
(8)

where Ei, Bi are components of the external
field tensor (see [15]). Here one obtains two
terms. One term contains the spatial components
γi of the γµ 4-vector, and the second term
contains the corresponding components of a
pseudo-vector.

The Pauli term has recently been rediscovered,
and it is shown that it describes weak
interactions, where parity violation is proved (see
[15, 16, 17]). Obviously, the electromagnetic field
tensor Fµν of (4) is replaced by an analogous
tensor of weak interactions fields which is
denoted by Fµν . This is a Maxwellian-like fields’
tensor that is associated with an external weak
dipole. Here the transition from the Lagrangian
density to the Hamiltonian density adds a γ0

factor, and (4) splits into a sum of a vector and
an axial vector. The Pauli term (4) shows the
flexibility of the first-order Dirac theory, where
the dimensionless σµν 4-tensor of (3) enables
to write down a consistent expression for an
interaction with a second rank antisymmetric
tensor that takes the form of Fµν . Like the
electromagnetic interaction term of (1), also the
Pauli term is free of derivatives of the Dirac
functions.

The dependence of the weak field Fµν of (8)
on an external weak dipole means that (8) is
a dipole-dipole interaction. The dimension of
the weak interaction Fermi constant G is [L2]
(see [18], p. 212). This property agrees with
the dipole-dipole interaction of the Pauli term
(4), where the coefficient d has the dimension
of length. This dimensional agreement and the
universality of the Fermi constant G (see [19],
p. 256) is another experimental support for
the dipole-dipole weak interactions theory (see
[15, 16, 17]).

Remark: The dipole-dipole weak interactions
theory is based on a consistent Lagrangian
density. It explains the important parity
nonconservation attribute of weak interactions.
However, this is not the final word because
details like flavor nonconservation processes,
generation-dependent effects, and the CKM
matrix require further elaboration.

3 DISCUSSION

The previous section emphasizes the effect of the
additional γ0 on the form of the interaction term
of a Dirac Hamiltonian HD. This is an important
issue because the time-evolution of a Dirac
particle is determined by the Dirac Hamiltonian

i
dψ

dt
= HDψ (9)

4



Comay; PSIJ, 23(4): 1-9, 2019; Article no.PSIJ.52602

(see [1], p. 8). It is mentioned in the first section
of this work that the transition of a measuring
device from an initial state at an initial time to
a different state at a later time establishes a
physical effect. This time-dependence means
that the Dirac Hamiltonian is required for
this purpose. In particular, in the case of
weak interactions, one should not examine the
tensorial form of the Pauli term (4) of a Dirac
Lagrangian density, but the corresponding vector
and pseudo-vector terms (8), which belong
to a Dirac Hamiltonian. It turns out that the
Hamiltonian’s interaction (8) shows a unique
success because it proves the V −A property
of weak interactions (see e.g. [18], pp. 217-
220). Here V denotes a vector interaction and A
denotes an axial vector interaction.

Authors of mainstream literature have overlooked
the effect of the γ0 matrix on the different forms
of the interaction term of a Dirac Lagrangian
density and the corresponding term of a Dirac
Hamiltonian density. This is the primary reason
for the rejection of the Pauli term (4) (namely,
the tensor interaction σµν ) as a candidate for
a description of weak interactions of a Dirac
Lagrangian density (see e.g. [18], pp. 217-220;
[20]).

The discussion of the previous section explains
why the relativistic covariance form of a Dirac
Lagrangian density differs from that of a Dirac
Hamiltonian density. This result is derived from
the Hamiltonian’s dependence on the generalized
momentum (6). It is proved below that this is a
more general property. Thus, the Lagrangian
density is a Lorentz scalar. On the other
hand, the Hamiltonian is an energy operator,
and energy is the 0-component of the energy-
momentum 4-vector (E,ppp). Furthermore, density
is the 0-component of the 4-current (ρ, jjj) (see
[21] pp. 73-78). Hence, the Hamiltonian density
is the 00-component of a second rank tensor,
called the energy-momentum tensor.

The standard construction of the energy-
momentum tensor sheds light on how in different
circumstances, one and the same term does not
undergo the same covariant transformations. Let
L be a Lagrangian density which is a Lorentz
scalar. The standard expression of its energy
momentum tensor is:

Tµν =
∂L
∂ψ,ν

gµαψ,α − gµνL (10)

(see [12], p. 310; [21], p. 83). The tensor (10)
satisfies energy-momentum conservation

Tµν
,ν = 0. (11)

The last term of (10) shows how every Lorentz
scalar term of a Lagrangian density L appears
as a (positive or negative) diagonal entry of
the second rank energy-momentum tensor
(10). This argument proves that all terms of a
Lagrangian density and corresponding terms of
a Hamiltonian density have different relativistic
properties.

It is explained above how the entire electroweak
theory has been based on an erroneous concept,
which identifies relativistic properties of terms of
a Lagrangian density with relativistic properties
of corresponding terms of its Hamiltonian density
(see e.g. [18], pp. 217-220; [20]). The required
coherence of the mathematical structure of a
physical theory is the basis for the expectation
that the erroneous basis of the electroweak
theory is likely to yield other specific errors. This
approach is true. Thus, the second section of
[15] discusses several uncorrectable electroweak
errors. The following list describes briefly these
errors.

Er.1 The (1 ± γ5) electroweak factor is
inconsistent with a massive neutrino.

Er.2 The previous error means that the
electroweak theory cannot explain the V-A
attribute of weak interactions.

Er.3 The electroweak theory regards the W±

bosons as elementary charged particles. Even
though the electroweak theory is about 50 years
old, it still has no consistent expression for the
W± electromagnetic interaction.

Er.4 Contradictions arise from the lack of a
coherent expression for the electroweak Z boson
density.

It turns out that this list does not exhaust the
erroneous elements of the electroweak theory.
Several other issues are mentioned in the next
section.
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4 FURTHER INCONSISTEN-
CIES OF THE ELECTRO-
WEAK THEORY

The crucial role of the Lagrangian density in
the structure of QFT is pointed out in the first
section of this work. In particular, solutions of
the Euler-Lagrange equations of this Lagrangian
density describe the physical properties of a
given quantum system.

The Dirac equation of spin-1/2 particles abides
by this requirement, and textbooks present this
equation together with some of its solutions
(see e.g. [13], pp. 2-13, 28-60). By contrast,
electroweak textbooks refrain from showing
the partial differential equations of the W±, Z
particles of this theory. A fortiori, no specific
solution of these equations is shown and
discussed.

One explanation for this shortcoming is probably
the fact that the full Lagrangian density of these
particles is terribly complicated, and the form of
their Euler-Lagrangian equations should be even
worse. For example, an expansion of the full
Lagrangian density of the electroweak bosons
(see [22], p. 518), yields dozens of terms. This
is just a part of the electroweak Lagrangian
density because one should also examine the
electroweak fermionic fields whose interaction
with the electroweak bosons contains the (1±γ5)
factor. Obviously, the number of terms of the
respective Euler-Lagrangian equations is even
larger. By contrast, the Lagrangian density of
electromagnetic interactions together with the
dipole-dipole weak interaction theory of [15]
comprises four terms – the three terms of the
Dirac electromagnetic Lagrangian density (1) and
the tensor interaction term (4). Hence, even
if one ignores the above mentioned inherent
electroweak contradictions, the Occam razor
principle [23], which favors the relative simplicity
of theories, provides another support for the weak
interaction theory of [15].

The factor (1 ± γ5) is a crucial element of the
electroweak theory (see e.g. [4], pp. 305-313).
Let us use the γ matrix notation of [13], p. 17.
The matrix (1±γ5) is a special case of the matrix
(1 ± λγ5), where λ > 0 is a real number. The
explicit form of an application of this matrix to

the spinor of a motionless spin-up Dirac
particle is:

1 0 ±λ 0
0 1 0 ±λ
±λ 0 1 0
0 ±λ 0 1




1
0
0
0

 =


1
0
±λ
0

 .

(12)

The result of (12) is unacceptable. Indeed, if
λ > 1 then the result is a negative energy spinor;
if λ = 1 then it describes a particle that moves
at the speed of light; if λ < 1 then it describes
a Dirac particle that moves parallel to the z-axis
(see [13], p. 30). The latter case violates energy
conservation. Therefore, a factor of the form
(1± λγ5) is unacceptable for a massive spinor.

The electroweak theory aims to combine
electromagnetic and weak interactions. Let
us examine the relative strength of these
interactions. The electromagnetic electron-
electron cross section decreases rapidly with
energy (see [18], p. 193). On the other hand,
a neutrino participates only in weak interaction,
and its cross section increases with energy (see
[24], p. 3). Hence, one should not ignore weak
interactions in cases of high enough energy. The
data of the decay of the W±, Z bosons and of
the top quark support this conclusion (see [25]).
Thus, the decay channels of these particles
contain many products having a new flavor. It
means that these channels are a weak interaction
process. The width of these particles is about 2
GeV. This width indicates that weak interactions
are stronger than strong interactions in the
energy region which is greater than 80 GeV. It is
explained above that the relative strength of weak
interactions is an important effect that cannot be
ignored at high enough energy. This issue is used
below in an examination of an elastic electron-
electron collision (see Fig. 1). Two incoming
electrons collide elastically at point O, exchange
momentum and depart from each other. The
arrows denote the direction of the motion of the
incoming and the outgoing electrons. This is
certainly a process that should be described by
electromagnetic and weak interaction theories.
The process of Fig. 1. comprises electrons and
is free of neutrinos. An electron is a well-known
massive Dirac particle, and it is shown above
that errors emerge from an application of
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Fig. 1. Two electrons collide elastically at point O (see text)

the factor (1± γ5) to a massive Dirac particle.
This factor is an inherent element of the
electroweak theory. For this reason, the
electroweak theory cannot properly describe
an electron-electron scattering process.

The experiment of Fig. 1 proves that the
electroweak neutrino mass problem is just
a rediscovery of the inherent contradiction
associated with the (1 ± γ5) factor. Indeed, the
same problem holds for an electron, which is a
well-known massive Dirac particle.

5 CONCLUSIONS

This work compares relativistic properties of the
Lagrangian density of a spin-1/2 Dirac particle
with those of its Hamiltonian density. It proves
that these theoretical concepts have different
relativistic attributes, and that important physical
consequences are derived from this distinction.
The main results are

1. The Lagrangian density is a Lorentz
scalar, whereas the Hamiltonian density is
a 00-component of a second rank energy-
momentum tensor.

2. This distinction is consistent with the fact
that the Lagrangian density is written in
terms of ψ̄. By contrast, the Hamiltonian

density is written in terms of ψ†, where
ψ̄ == ψ†γ0. The additional γ0 factor
is the 0-component of the 4-vector γµ,
and it means that terms of a Lagrangian
density and corresponding terms of the
associated Hamiltonian density undergo a
different Lorentz transformation.

3. The foregoing outcome entails that a
tensor interaction term of a Lagrangian
density (called a Pauli term) yields a
Hamiltonian density that comprises two
terms – a vector and an axial vector. This
result explains the V-A attribute of weak
interactions.

4. An overlook of the meaning of items 1-
3 is the reason for the formulation of the
electroweak theory.

5. The erroneous basis of the electroweak
theory is the origin of several specific
errors of this theory. Here are several
examples:

A. Electroweak textbooks do not show
fundamental quantum requirements.
Thus, the Dirac equation of motion of a
spin-1/2 particle is shown in every relevant
textbook. By contrast, the electroweak
theory is about 50 years old, but textbooks
still do not explicitly display the quantum
equations of motion of its particles.
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B. The electroweak theory claims that the
W± are electrically charged elementary
particles, but these particles still have
no expression for the electromagnetic
interaction that is consistent with
Maxwellian electrodynamics.

C. The factor (1 ± γ5) is a vital element
of the electroweak theory. It is now
recognized that this factor is inconsistent
with a massive neutrino. The paper proves
that this factor is also inconsistent with the
electron.
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