
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: ternagodfrey@gmail.com; 
 
 
 

Journal of Scientific Research & Reports 
 
25(6): 1-10, 2019; Article no.JSRR.54012 
ISSN: 2320-0227 

 
 

 

 

On A Shape Parameter of Gompertz Inverse 
Exponential Distribution Using Classical and Non 

Classical Methods of Estimation 
 

Terna Godfrey Ieren1*, Adana’a Felix Chama2, Olateju Alao Bamigbala3, 
Jerry Joel1, Felix M. Kromtit4 and Innocent Boyle Eraikhuemen5 

 
1
Department of Statistics and Operations Research, MAUTech, P.M.B. 2076, Yola, Nigeria. 

2Department of Mathematical Sciences, Taraba State University, Jalingo, Nigeria. 
3
Department of Mathematics and Statistics, Federal University Wukari, Taraba State, Nigeria. 

4Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria. 
5
Department of Physical Sciences, Benson Idahosa University, Benin City, Nigeria. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/JSRR/2019/v25i630203 
Editor(s): 

(1) Dr. R. Pandiselvam, Agricultural Process Engineering, ICAR-Central Plantation Crops Research Institute, 
India. 

Reviewers: 
(1) Pedro Luiz Ramos, University of São Paulo, Brazil. 

(2) Anwesha Chattopadhyay (Samanta), University of Calcutta, India. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/54012 

 
 
 

Received 10 November 2019 
Accepted 15 January 2020 

Published 23 January 2020 

 
 

ABSTRACT 
 

The Gompertz inverse exponential distribution is a three-parameter lifetime model with greater 
flexibility and performance for analyzing real life data. It has one scale parameter and two shape 
parameters responsible for the flexibility of the distribution. Despite the importance and necessity of 
parameter estimation in model fitting and application, it has not been established that a particular 
estimation method is better for any of these three parameters of the Gompertz inverse exponential 
distribution. This article focuses on the development of Bayesian estimators for a shape of the 
Gompertz inverse exponential distribution using two non-informative prior distributions (Jeffery and 
Uniform) and one informative prior distribution (Gamma prior) under Square error loss function 
(SELF), Quadratic loss function (QLF) and Precautionary loss function (PLF). These results are 
compared with the maximum likelihood counterpart using Monte Carlo simulations. Our results 
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indicate that Bayesian estimators under Quadratic loss function (QLF) with any of the three prior 
distributions provide the smallest mean square error for all sample sizes and different values of 
parameters. 
 

 
Keywords: Bayesian method; uniform prior; Jeffrey’s prior; gamma prior; loss functions; MLE; MSE; 

sample sizes. 
 

1. INTRODUCTION 
 
The The Gompertz inverse exponential 
distribution (GoIED) is an extension of the 
inverse exponential distribution recently 
proposed by Oguntunde et al. [1] with many 
properties of the model studied and discussed 
accordingly. The probability density function (pdf) 
of the model and its failure rate have unimodal 
shapes which is an indication that the model 
would be useful for real-life events with unimodal 
failure rates. This distribution is found to be 
tractable and flexible and shows high modeling 
capability due to the fact that it outperforms other 
important models such as the Gompertz 
exponential distribution, Gompertz Weibull 
distribution and Gompertz Lomax distribution 
after some applications to real life data [1]. The 
GoIED is a very competitive model, and it is 
hoped that it would be of use in fields like 
engineering, biology and medicine. Considering 
the importance of this distribution, it is of no 
doubt very necessary to identify the best 
methods for estimating the parameters of the 
GoIED which will remain useful in all possible 
applications of this model in most real life 
situations as mentioned earlier. 
 
According to Oguntunde, et al. [1], the probability 
density function (pdf), the cumulative distribution 
function (cdf), the survival function (sf), the 
hazard function (or failure rate) and quantile 
function (qf) of the GoIED are respectively 
defined as: 
 

 
1 11

2
e 1 e e

x

x x

e

f x
x



  


  

            
 

          (1) 

 

 
1 1

1 e

xe

F x






  

   
                                             (2) 

 

 
1 1

( ) 1 =e

xe

S x F x






  

   
                                     (3) 

 
 
 

1

2
( ) e 1 ex x

f x
h x

S x x

    
    
 

                            (4) 

and 
 

  
 

1

log 1
log 1 1

u
Q u






   
     

   

                      (5) 

 
For 0, , , 0x      where   and  are the 

shape parameters and   is the scale parameter 
of the distribution. 
 
These functions are represented graphically 
using some arbitrary parameter values as 
displayed in the following figures. 
 
In statistics, we have two basic methods of 
parameter estimation and these are the classical 
and the non classical methods. In the classical 
theory of estimation, the parameters are taken to 
be fixed but unknown whereas we consider the 
parameters to be unknown and random just like 
variables under non classical method. The most 
popular and unique method under classical 
theory is the method of maximum likelihood 
estimation while the Bayesian estimation     
method is considered under non classical theory. 
But, in common real life problems described by 
life time distributions, the parameters cannot be 
treated as fixed in all the life testing period 
according to Martz and Waller [2] as well as 
Ibrahim et al. [3] and Singpurwalla [4]. Based on 
this fact, it becomes obvious the frequentist or 
classical approach can no longer handle 
adequately problems of parameter estimation in 
life time models and therefore the need for non 
classical or Bayesian estimation in life time 
models. 
 
Due to the stated problem above, a number of 
research works on Bayesian estimation method 
of parameters have been conducted and a 
highlight of some of these studies which 
dependent on the distribution in question are as 
follows: Bayesian estimation for the extreme 
value distribution using progressive censored 
data and asymmetric loss by Al-Aboud [5], 
Bayesian estimators of the shape and scale 
parameters of modified Weibull distribution using 
Lindley’s approximation under the squared error 



 
 
 
 

Ieren et al.; JSRR, 25(6): 1-10, 2019; Article no.JSRR.54012 
 
 

 
3 
 

loss function, LINEX loss function and 
generalized entropy loss function by Preda et al. 
[6], comparison of Bayesian estimates of the 
shape parameter of Generalized Exponential 
Distribution based on a class of non-informative 
prior under the assumption of quadratic loss 
function, squared log-error loss function and 
general entropy loss function (GELF) and 
maximum likelihood estimates by Dey [7], 
Bayesian Survival Estimator for Weibull 
distribution with censored data by Ahmed et al. 
[8] as well as Pandey et al. [9], Al-Athari [10]. 
Ieren and Yahaya [11] introduced and studied 
the properties of a Weimal distribution with 
applications to real life data while Yahaya and 
Ieren [12] estimated its parameters using 
maximum likelihood method which was in recent 
times compared with the Bayesian approach 
considering a scale parameter of the Weimal 

distribution by Mabur et al. [13] in a study titled 
“Bayesian Estimation of the Scale Parameter of 
the Weimal Distribution” in which the results 
show that Bayesian estimators of the scale 
parameter were better than that of maximum 
likelihood method. Similarly, Aliyu and Yahaya 
[14] studied the shape parameter of generalized 
Rayleigh distribution under non-informative priors 
with a comparison to the method of maximum 
likelihood. Also, a good number of loss functions 
have been shown to have performed better 
during estimation under Bayesian method in so 
many studies including “Bayesian analysis of 
Weibull distribution using R software” by Ahmad 
and Ahmad [15], “On parameter estimation of 
erlang distribution using Bayesian method under 
different loss functions” by Ahmad et al. [16], 
“Classical and Bayesian approach in estimation 
of the scale parameter of Nakagami distribution”

 

 
 

Fig. 1. Plots of the PDF, CDF, survival function and hazard function of the GoIED for selected 
parameter values 
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by Ahmad et al. [17], “Maximum Likelihood and 
Bayes Estimation in Randomly Censored 
Geometric Distribution” by Krishna and Goel [18], 
“a comparison between maximum likelihood and 
Bayesian estimation methods for a shape 
parameter of the Weibull-exponential distribution” 
by Ieren and Oguntunde [19], “classical and 
Bayesian estimation of Weibull distribution in the 
presence of outliers” by Gupta and Singh [20], 
“Estimation of parameter and reliability function 
of the exponentiated inverted Weibull distribution 
using classical and Bayesian approach” by 
Gupta [21], “Bayesian estimation of a shape 
parameter of the Weibull-Frechet distribution” by 
Ieren and Chukwu [22], “posterior properties of 
the Nakagami-m distributions using non-
informative priors and applications in reliability” 
by Ramos et al. [23], “Bayesian reference 
analysis for the generalized gamma distribution” 
by Ramos and Louzada [24] and “Reference 
Bayesian analysis for the generalized lognormal 
distribution with application to survival data” by 
Tomazella et al. [25] e.t.c. 
 
The method of estimating parameters in a 
distribution differs from one parameter of a 
distribution to another and the Gompertz inverse 
exponential distribution is not an exception. 
Hence, this study aims at estimating one shape 
parameter of the Gompertz inverse exponential 
distribution using Bayesian approach and making 
a comparison between the Bayesian approach 
and the method of maximum likelihood 
estimation. 
 
The aim of this article is to estimate a shape 
parameter of the Gompertz inverse exponential 
distribution with Bayesian method using uniform 
prior, Jeffrey’s prior and gamma prior with three 
loss functions for the case of complete samples. 
Including this introductory section, the rest of this 
article unfolds as follows: in Section 2, maximum 
likelihood estimator (MLE) for the shape 
parameter is obtained. In Section 3, Bayesian 
estimators based on different loss functions by 

taking uniform prior, Jeffrey’s prior and gamma 
prior are derived. The proposed estimators are 
compared in terms of their mean squared error 
(MSE) in Section 4. Finally, conclusions and 
recommendations are presented in Section 5. 
 

2. MAXIMUM LIKELIHOOD ESTIMATION 
 
Maximum Likelihood is a popular estimation 
technique for many distributions because it picks 
the values of the distribution's parameters that 
make the data more likely" than any other value 
of the parameter. This is accomplished by 
maximizing the likelihood function of the 
parameter(s) given the data. 
 

Let 1 2, ,......, nx x x  be a random sample from a 

population X with probability density function

( ),f x . The likelihood is the joint probability 

function of the data, but viewed as a function of 
the parameters, treating the observed data as 
fixed quantities. Assuming that the values, 

 1 2, ,..., nx x x x  are obtained independently, 

the likelihood function is given by 
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The likelihood function,  | , ,L x    , is defined 

to be the joint density of the random variables 

1 2, ,......, nx x x  and it is given as 
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The likelihood function for the shape parameter,
 , is given by; 
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independent of the shape parameter,  . 
 

Let the log-likelihood function,
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Differentiating �  partially with respect to , the 

shape parameter and solving for ̂  gives; 
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where ̂  is the maximum likelihood estimator of 
the shape parameter, . 
 

3. BAYESIAN ESTIMATION 
 

The Bayesian inference requires appropriate 
choice of prior(s) for the parameter(s). From the 
Bayesian viewpoint, there is no clear cut way 
from which one can conclude that one prior is 
better than the other. Nevertheless, very often 
priors are chosen according to one’s subjective 
knowledge and beliefs. However, if one has 
adequate information about the parameter(s), it 
is better to choose informative prior(s); 
otherwise, it is preferable to use non-informative 
prior(s). 
 

To obtain the posterior distribution of the shape 
parameter once the data has been observed, we 
apply bayes’ Theorem which is stated in the 
following form: 
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Where  P x  is the marginal distribution of X and 
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when the prior distribution of 

  is discrete and   ( ) ( | )P x p L x d  



   when the 

prior distribution of   is continuous. Also note 
that  p   and ( | )L x   are the prior distribution 

and the Likelihood function respectively. 
 

4. BAYESIAN ANALYSIS UNDER THE 
ASSUMPTION OF UNIFORM PRIOR 
USING THREE LOSS FUNCTIONS 

 

The uniform prior is defined as: 
 

  1;0p                                                 (12) 

 
The posterior distribution of the shape parameter 
  under uniform prior is obtained from equation 
(11) using integration by substitution method as 
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With the above uniform prior and posterior 
distribution from it, we will use three loss 
functions to estimate the shape parameter of the 
GoIED and these loss functions are defined as 
follows: 
 

(a) Squared Error Loss Function (SELF) 
 

The squared error loss function proposed by 
Legendre (1805) and Gauss (1810) relating to 
the shape parameter   is defined as 
 

   
2
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where SELF  is the estimator of the parameter 

  under SELF. 
 

(b) Quadratic Loss Function (QLF) 
 

The quadratic loss function is defined from Azam 
and Ahmad [26] as 
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where QLF  is the estimator of the parameter   

under QLF. 
 

(c) Precautionary Loss Function (PLF) 
 

The precautionary loss function (PLF) introduced 
by Norstrom [27] is an asymmetric loss function 
and is defined as 
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where PLF  is the estimator of the shape 

parameter   under PLF. 
 

Now the Bayes estimators under uniform prior 
using SELF, QLF and PLF are given respectively 
as follows: 
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and 
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5. BAYESIAN ANALYSIS UNDER THE 
ASSUMPTION OF JEFFREY’S PRIOR 
USING THREE LOSS FUNCTIONS 

 

Also, the Jeffrey’s prior is defined as: 
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The posterior distribution of the shape parameter 
  for a given data under Jeffrey prior is 
obtained from equation (11) using integration by 
substitution method as 
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Again the Bayes estimators under Jeffrey’s prior 
using SELF, QLF and PLF are given respectively 
as follows: 
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6. BAYESIAN ANALYSIS UNDER THE 
ASSUMPTION OF GAMMA PRIOR 
USING THREE LOSS FUNCTIONS 

 
Also, the gamma prior is defined as: 
 

 
 

1
b

b aa
P e

b
   



                                            (25) 

 
The posterior distribution of the shape parameter 
  for a given data under gamma prior is 

obtained from equation (11) using integration by 
substitution method as 
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Also the Bayes estimators under gamma prior 
using SELF, QLF and PLF are given respectively 
as: 
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7. RESULTS AND DISCUSSION 
 

In this section, Monte Carlo simulation with R 
software under 10,000 replications is considered 
to generate random samples of sizes n = (10, 25, 
50, 100, 150, 200) from Gompertz inverse 
exponential distribution using the quantile 
function (inverse transformation method of 
simulation) under the following combination of 
parameter values:

 0.5, 0.5, 0.5, 1a       

and 2b  ; 0.5, 0.5, 2, 1a       and 2b  ; 

0.5, 2, 0.5, 1a       and 2b   and 

2, 0.5, 0.5, 1a       and 2b  . The 

following tables present the results of our 
simulation study by listing the average estimates 
of the shape parameter with their respective 
Mean Square Errors (MSEs) under the 
appropriate estimation methods which include 
the Maximum Likelihood Estimation (MLE), 
Squared Error Loss Function (SELF), Quadratic 
Loss Function (QLF), and Precautionary Loss 
Function (PLF) under Uniform Jeffrey and 
gamma priors respectively. The criterion for 
evaluating the performance of the estimators in 
this study is the Mean Square Error (MSE): 

 
21 ˆ .

n
MSE E   

 
 

The results in Tables 1-4 show that the estimator 
of the shape parameter using QLF under 
Gamma, uniform and Jeffrey priors is better than 
the other estimators with small MSE irrespective 
of the variation in the samples. This behavior of 
minimum MSE for Bayesian estimation (using 



 
 
 
 

Ieren et al.; JSRR, 25(6): 1-10, 2019; Article no.JSRR.54012 
 
 

 
7 
 

QLF under Uniform, Jeffrey and gamma priors) is 
an indication that the method is the most efficient 
for estimating this shape parameter compared to 
the Method of Maximum Likelihood estimation 
(MLE) and Bayesian with other loss functions. 
More so, comparing the QLF under the prior 

distributions it is discovered that the QLF under 
the Jeffrey prior has the smallest MSE compared 
to the QLF under uniform and gamma priors for a 
smaller value of the shape parameter whereas, 
the QLF under the gamma prior has the smallest 
MSE compared to the QLF under uniform and

 
Table 1. Average estimates (Estimates) and Mean Squared Errors (MSEs) for 

0.5, 0.5, 0.5, 1a       and 2b  under different priors, loss functions and sample sizes 
 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 
SELF QLF PLF SELF QLF PLF SELF QLF PLF 

10 Estimate 0.5579 0.6137 0.5021 0.6409  0.5579  0.4463  0.5851  0.6303  0.5252  0.6560 
MSE 0.0415  0.0591  0.0309  0.0702  0.0415  0.0273  0.0492  0.0588  0.0297  0.0697  

25 Estimate 0.5197  0.5404  0.4989  0.5507  0.5197  0.4781  0.530  0.5493  0.5086  0.5594  
MSE 0.0120  0.0142  0.0107  0.0156  0.0120  0.0103  0.013  0.0148  0.0107  0.0164  

50 Estimate 0.5106  0.5208  0.5004  0.5259  0.5106  0.4902  0.5157  0.5255  0.5053  0.5306  
MSE 0.0056  0.0061  0.0052  0.0065  0.0056  0.0051  0.0058  0.0063  0.0053  0.0067  

100 Estimate 0.5047  0.5098  0.4997  0.5123  0.5047  0.4946  0.5072  0.5122  0.5022  0.5147  
MSE 0.0027  0.0028  0.0026  0.0029  0.0027  0.0026  0.0027  0.0029  0.0026  0.0030  

150 Estimate 0.5022  0.5056  0.4989  0.5072  0.5022  0.4955  0.5039  0.5072  0.5005  0.5089  
MSE 0.0017  0.0018  0.0017  0.0018  0.0017  0.0017  0.0018  0.0018  0.0017  0.0019  

200 Estimate 0.5026  0.5051  0.5001  0.5064  0.5026  0.4976  0.5039  0.5063  0.5013  0.5076  
MSE 0.0013  0.0013  0.0013  0.0013  0.0013  0.0012  0.0013  0.0013  0.0013  0.0013  

 

Table 2. Average estimates (Estimates) and Mean Squared Errors (MSEs) for 

0.5, 0.5, 2, 1a       and 2b  under different priors, loss functions and sample sizes 

 
n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 
10 Estimate 0.5579  0.6137  0.5021  0.6409  0.5579  0.4463  0.5851  0.6303  0.5252  0.6560  

MSE 0.0415  0.0591  0.0309  0.0702  0.0415  0.0273  0.0492  0.0588  0.0297  0.0697  
25 Estimate 0.5197  0.5404  0.4989  0.5507  0.5197  0.4781  0.530  0.5493  0.5086  0.5594  

MSE 0.0120  0.0142  0.0107  0.0156  0.0120  0.0103  0.013  0.0148  0.0107  0.0164  
50 Estimate 0.5106  0.5208  0.5004  0.5259  0.5106  0.4902  0.5157  0.5255  0.5053  0.5306  

MSE 0.0056  0.0061  0.0052  0.0065  0.0056  0.0051  0.0058  0.0063  0.0053  0.0067  
100 Estimate 0.5047  0.5098  0.4997  0.5123  0.5047  0.4946  0.5072  0.5122  0.5022  0.5147  

MSE 0.0027  0.0028  0.0026  0.0029  0.0027  0.0026  0.0027  0.0029  0.0026  0.0030  
150 Estimate 0.5022  0.5056  0.4989  0.5072  0.5022  0.4955  0.5039  0.5072  0.5005  0.5089  

MSE 0.0017  0.0018  0.0017  0.0018  0.0017  0.0017  0.0018  0.0018  0.0017  0.0019  
200 Estimate 0.5026  0.5051  0.5001  0.5064  0.5026  0.4976  0.5039  0.5063  0.5013  0.5076  

MSE 0.0013  0.0013  0.0013  0.0013  0.0013  0.0012  0.0013 0.0013 0.0013 0.0013 

 
Table 3. Average estimates (Estimates) and Mean Squared Errors (MSEs) for 

0.5, 2, 0.5, 1a       and 2b   under different priors, loss functions and sample sizes 

 

n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 
SELF QLF PLF SELF QLF PLF SELF QLF PLF 

10 Estimate 0.5579  0.6137  0.5021  0.6409  0.5579  0.4463  0.5851  0.6303  0.5252  0.6560  
MSE 0.0415  0.0591  0.0309  0.0702  0.0415  0.0273  0.0492  0.0588  0.0297  0.0697  

25 Estimate 0.5197  0.5404  0.4989  0.5507  0.5197  0.4781  0.530  0.5493  0.5086  0.5594  
MSE 0.0120  0.0142  0.0107  0.0156  0.0120  0.0103  0.013  0.0148  0.0107  0.0164  

50 Estimate 0.5106  0.5208  0.5004  0.5259  0.5106  0.4902  0.5157  0.5255  0.5053  0.5306  
MSE 0.0056  0.0061  0.0052  0.0065  0.0056  0.0051  0.0058  0.0063  0.0053  0.0067  

100 Estimate 0.5047  0.5098  0.4997  0.5123  0.5047  0.4946  0.5072  0.5122  0.5022  0.5147  
MSE 0.0027  0.0028  0.0026  0.0029  0.0027  0.0026  0.0027  0.0029  0.0026  0.0030  

150 Estimate 0.5022  0.5056  0.4989  0.5072  0.5022  0.4955  0.5039  0.5072  0.5005  0.5089  
MSE 0.0017  0.0018  0.0017  0.0018  0.0017  0.0017  0.0018  0.0018  0.0017  0.0019  

200 Estimate 0.5026  0.5051  0.5001  0.5064  0.5026  0.4976  0.5039  0.5063  0.5013  0.5076  
MSE 0.0013  0.0013  0.0013  0.0013  0.0013  0.0012  0.0013 0.0013 0.0013 0.0013 
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Table 4. Average estimates (Estimates) and Mean Squared Errors (MSEs) for 

2, 0.5, 0.5, 1a       and 2b   under different priors, loss functions and sample sizes 

 
n Measures MLE Uniform prior Jeffrey’s prior Gamma prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 
10 Estimate 2.2315  2.4546  2.0083  2.5638  2.2315  1.7852  2.3404  2.1523  1.7936  2.2402  

MSE 0.6640  0.9453  0.4945  1.1236  0.6640  0.4368  0.7873  0.3616  0.2776  0.4243  
25 Estimate 2.0787  2.1618  1.9955  2.2030  2.0787  1.9124  2.1198  2.0664  1.9133  2.1043  

MSE 0.1918  0.2269  0.1711  0.2497  0.1918  0.1648  0.2074  0.1581  0.1393  0.1703  
50 Estimate 2.0423  2.0832  2.0015  2.1035  2.0423  1.9606  2.0627  2.0391  1.9606  2.0586  

MSE 0.0891  0.0977  0.0838  0.1033  0.0891  0.0820  0.0929  0.0815  0.0755  0.0849  
100 Estimate 2.0189  2.0391  1.9987  2.0492  2.0189  1.9785  2.0290  2.0181  1.9785  2.028  

MSE 0.0429  0.0450  0.0417  0.0463  0.0429  0.0413  0.0438  0.0411  0.0397  0.042  
150 Estimate 2.0089  2.0223  1.9955  2.0290  2.0089  1.9821  2.0156  2.0086  1.9822  2.0152  

MSE 0.0279  0.0287  0.0275  0.0293  0.0279  0.0274  0.0283  0.0272  0.0267  0.0275  
200 Estimate 2.0104  2.0205  2.0003  2.0255  2.0104  1.9903  2.0154  2.0102  1.9903  2.0152  

MSE 0.0203  0.0208  0.0200  0.0212  0.0203  0.0199  0.0206  0.0199  0.0195  0.0201 

 
Jeffrey priors for a higher value of the shape 
parameter and these efficiency of the QLF is 
found to be consistent despite the differences in 
the sample sizes and the parameter values. 
 
In general, the results in Tables 1-4 provide the 
averages of the MLEs (Mean estimates) and 
mean square errors (MSEs) for a shape 
parameter of the GoIED distribution. From the 
figures in Tables 1-4, it is shown that the average 
estimates tend to be closer to the true parameter 
value when sample size increases and the mean 
square errors (MSEs) all decrease as sample 
size increases which is in agreement with first-
order asymptotic theory. It is noted that Bayesian 
estimators and maximum likelihood estimators 
(MLEs) become better when the sample size 
increases. However, for very large sample sizes 
this performance is observed to be the same for 
both methods. 
 

8. CONCLUSION 
 
In this article, we obtain Bayesian estimators for 
a shape parameter of Gompertz inverse 
exponential distribution. The Posterior 
distributions of this parameter are derived by 
assuming Uniform, Jeffrey and gamma prior 
distributions. Bayes estimators have been 
derived by using three loss functions under the 
three priors and posterior distributions 
respectively. The performance of these 
estimators have been assess on the basis of 
their mean square errors using the inverse 
transformation method of Monte Carlo 
Simulations for different parameter values and 
sample sizes. The results of the simulation and 
comparison show that using the QLF gives 
estimators with the smallest MSEs under all the 
prior distributions (gamma, Jeffreys and uniform). 

Most importantly, we found that Bayesian 
Method using Quadratic Loss Function (QLF) 
under Jeffrey prior produces the best estimators 
of the shape parameter compared to estimators 
using Maximum Likelihood method, Squared 
Error Loss Function (SELF) and Precautionary 
Loss Function (PLF) under both Uniform and 
gamma priors when the value of the estimated 
shape parameter is smaller whereas, Bayesian 
Method using Quadratic Loss Function (QLF) 
under gamma prior produces the best estimators 
of the shape parameter compared to estimators 
using Maximum Likelihood method, Squared 
Error Loss Function (SELF) and Precautionary 
Loss Function (PLF) under both Uniform and 
Jeffrey priors when the value of the estimated 
shape parameter is higher irrespective of the 
selected values of the parameters and the 
allocated sample sizes. It is also discovered that 
the values of the other two parameters of the 
GoIED have no effect on the estimators of the 
estimated shape parameter. In conclusion, this 
study considers a shape parameter of the 
Gompertz inverse exponential distribution and it 
encourages subsequent studies to look at the 
remaining two parameters of the distribution 
because in real life applications of a model it is 
necessary to understand the best method for 
estimating all the unknown parameters of the 
model. 
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